4 resultados para humanitarian

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compressive Sampling Matching Pursuit (CoSaMP) is one of the popular greedy methods in the emerging field of Compressed Sensing (CS). In addition to the appealing empirical performance, CoSaMP has also splendid theoretical guarantees for convergence. In this paper, we propose a modification in CoSaMP to adaptively choose the dimension of search space in each iteration, using a threshold based approach. Using Monte Carlo simulations, we show that this modification improves the reconstruction capability of the CoSaMP algorithm in clean as well as noisy measurement cases. From empirical observations, we also propose an optimum value for the threshold to use in applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthogonal Matching Pursuit (OMP) is a popular greedy pursuit algorithm widely used for sparse signal recovery from an undersampled measurement system. However, one of the main shortcomings of OMP is its irreversible selection procedure of columns of measurement matrix. i.e., OMP does not allow removal of the columns wrongly estimated in any of the previous iterations. In this paper, we propose a modification in OMP, using the well known Subspace Pursuit (SP), to refine the subspace estimated by OMP at any iteration and hence boost the sparse signal recovery performance of OMP. Using simulations we show that the proposed scheme improves the performance of OMP in clean and noisy measurement cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A vehicle is modeled as an array of magnetic dipoles. The strength of the magnetic dipole and the separation between the magnetic dipoles varies for different vehicles and is dependent on the metallic composition and configuration of the vehicle. Based on the magnetic dipole data model, we present a novel method to extract a feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose modulation diversity techniques for Spatial Modulation (SM) system using Complex Interleaved Orthogonal Design (CIOD). Specifically, we show that the standard SM scheme can achieve a transmit diversity order of two by using the CIOD meant for two transmit antenna system without incurring any additional system complexity or bandwidth requirement. Furthermore, we propose a low-complexity maximum likelihood detector for our CIOD based SM schemes by exploiting the structure of the CIOD. We show with our simulation results that the proposed schemes offer transmit diversity order of two and give a better symbol error rate performance than the conventional SM scheme.