13 resultados para human primary skeletal muscle cells

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Augmentation of hexosamine biosynthetic pathway (HBP) and endoplasmic reticulum (ER) stress were independently related to be the underlying causes of insulin resistance. We hypothesized that there might be a molecular convergence of activated HBP and ER stress pathways leading to insulin resistance. Augmentation of HBP in L6 skeletal muscle cells either by pharmacological (glucosamine) or physiological (high-glucose) means, resulted in increased protein expression of ER chaperones (viz., Grp78, Calreticulin, and Calnexin), UDP-GlcNAc levels and impaired insulin-stimulated glucose uptake. Cells silenced for O-glycosyl transferase (OGT) showed improved insulin-stimulated glucose uptake (P < 0.05) but without any effect on ER chaperone upregulation. While cells treated with either glucosamine or high-glucose exhibited increased JNK activity, silencing of OGT resulted in inhibition of JNK and normalization of glucose uptake. Our study for the first time, demonstrates a molecular convergence of O-glycosylation processes and ER stress signals at the cross-road of insulin resistance in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most human ACTA1 skeletal actin gene mutations cause dominant, congenital myopathies often with severely reduced muscle function and neonatal mortality. High sequence conservation of actin means many mutated ACTA1 residues are identical to those in the Drosophila Act88F, an indirect flight muscle specific sarcomeric actin. Four known Act88F mutations occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for similar muscle phenotypes. Mutant homozygotes show phenotypes ranging from a lack of myofibrils to almost normal sarcomeres at eclosion. Aberrant Z-disc-like structures and serial Z-disc arrays, ‘zebra bodies’, are observed in homozygotes and heterozygotes of all four Act88F mutants. These electron-dense structures show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. We conclude that the Drosophila indirect flight muscles provide a good model system for studying ACTA1 mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human primary lung carcinoma cell line (HPL-R1) established from the tumor biopsy of a lung cancer patient, lacking in cytochrome P1-450 [aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH)], was cloned and used to obtain variants deficient in the expression of thymidine-kinase via treatment with 5-bromo-2'-deoxyuridine, and selection for drug resistance phenotype. The variant cell line, precharacterized for thymidine kinase negative phenotype, was transfected with the thymidine kinase gene bearing p R-tk and px1-tk plasmids. Transfections from both the plasmids, demonstrated a frequency of 5.5 X 10(-5). The transfectants showed a 76-100% retention of the transferred phenotype. These data suggest that transfection in variant human cells can approach significant levels of stability observed with rodent cell recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Human papillomavirus oncoproteins E6 and E7 down modulate Toll-like receptor (TLR) 9 expression in infected keratinocytes. We explored the status of expression and function of TLR7, TLR8, and TLR9 in primary human Langerhans cells (LCs) isolated from cervical tumors. Methodology: Single-cell suspensions were made from fresh tissues of squamous cell carcinoma (International Federation of Gynecology and Obstetrics stage IB2); myeloid dendritic cells were purified using CD1c magnetic activated cell separation kits. Langerhans cells were further flow sorted into CD1a(+)CD207(+) cells. Acute monocytic leukemia cell line THP-1-derived LCs (moLCs) formed the controls. mRNA from flow-sorted LCs was reverse transcribed to cDNA and TLR7, TLR8, and TLR9 amplified. Monocyte-derived Langerhans cells and cervical tumor LCs were stimulated with TLR7, TLR8, and TLR9 ligands. Culture supernatants were assayed for interleukin (IL) 1 beta, IL-6, IL-10, IL-12p70, interferon (IFN) alpha, interferon gamma, and tumor necrosis factor (TNF) alpha by Luminex multiplex bead array. Human papillomavirus was genotyped. Results: We have for the first time demonstrated that the acute monocytic leukemia cell line THP-1 can be differentiated into LCs in vitro. Although these moLCs. expressed all the 3 TLRs, tumor LCs expressed TLR7 and TLR8, but uniformly lacked TLR9. Also, moLCs secreted IL-6, IL-1 beta, and tumor necrosis factor alpha to TLR8 ligand and interferon alpha in response to TLR9 ligand; in contrast, tumor LCs did not express any cytokine to any of the 3 TLR ligands. Human papillomavirus type 16 was one of the common human papillomavirus types in all cases. Conclusions: Cervical tumor LCs lacked TLR9 expression and were functionally anergic to all the 3: TLR7, TLR8, and TLR9 ligands, which may play a crucial role in immune tolerance. The exact location of block(s) in TLR7 and TLR8 signaling needs to be investigated, which would have important immunotherapeutic implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. Methodology: Single cell suspensions derived from human breast `organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. Principal Findings: We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. Conclusions: Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth of human promonocytic leukaemic U937 cells was found arrested within 24 h upon exposure to interferon gamma (IFN-gamma). Removal of the interferon did not result in the resumption of growth, as is evident from the absence of doubling of viable cell count and(3)H-thymidine incorporation. 5-Bromo-2'-deoxyuridine-based flow cytometric analysis of the growth-arrested cells, 24 h subsequent to the removal of IFN-gamma, showed absence of DNA synthesis, confirming the irreversible nature of the growth inhibition. Propidium iodide-based flow cytometric analysis of the growth-arrested cells showed a distribution which is typical of a growth inhibition without resulting in the accumulation of cells in any specific phase of the cell cycle. These results indicated that IFN-gamma arrested growth of U937 cells in an irreversible and cell cycle phase-independent manner. These observations were in contrast to our earlier report on the reversible and cell cycle phase-specific growth inhibition of human amniotic (fetal epithelial) WISH cells by the interferon. Copyright 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar macrophages form the first line of defense against inhaled droplets containing Mycobacterium tuberculosis by controlling mycobacterial growth and regulating T cell responses. CD4+ and gamma delta T cells, two major T cell subsets activated by M. tuberculosis, require accessory cells for activation. However, the ability of alveolar macrophages to function as accessory cells for T cell activation remains controversial. We sought to determine the ability of alveolar macrophages to serve as accessory cells for resting (HLA-DR-, IL-2R-) and activated (HLA-DR+, IL-2R+) gamma delta T cells in response to M. tuberculosis and its Ag, and to compare accessory cell function for gamma delta T cells of alveolar macrophages and blood monocytes obtained from the same donor. Alveolar macrophages were found to serve as accessory cells for both resting and activated gamma delta T cells in response to M. tuberculosis Ag. At high alveolar macrophage to T cell ratios (> 3:1), however, expansion of resting gamma delta T cells was inhibited by alveolar macrophages. The inhibition of resting gamma delta T cells by alveolar macrophages was dose-dependent, required their presence during the first 24 h, and was partially overcome by IL-2. Alveolar macrophages did not inhibit activated gamma delta T cells even at high accessory cell to T cell ratios, and alveolar macrophages functioned as well as monocytes as accessory cells. Monocytes were not inhibitory for either resting or activated gamma delta T cells. These findings support the following model. In the normal alveolus the alveolar macrophage to T cell ratio is > or = 9:1, and therefore the threshold for resting gamma delta T cell activation is likely to be high. Once a nonspecific inflammatory response occurs, such as after invasion by M. tuberculosis, this ratio is altered, favoring gamma delta T cell activation by alveolar macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-beta and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Productive infection of human amniotic and endothelial cell lines with Japanese encephalitis virus (JEV) was established leading to the induction of NF kappa B and HLA-F, a non-classical MHC molecule. Induction of the HLA-F gene and protein in JEV-infected cells was shown to be NF kappa B dependent since it was blocked by inhibitors of NF kappa B activation. ShRNA targeting lentivirus-mediated stable knockdown of the p65 subunit of NF kappa B inhibited JEV-mediated induction of HLA-F both in the amniotic cell line, AV-3 as well as the human brain microendothelial cell line, HBMEC. The induction of HLA-F by treatment of AV-3 with TNF-alpha was also inhibited by ShRNA mediated knockdown of NF kappa B. TNF-alpha treatment of HEK293T cells that were transfected with reporter plasmids under the control of HLA-F enhancer A elements resulted in significant transactivation of the luciferase reporter gene. NF kappa B-mediated induction of HLA-F following JEV infection and TNF-alpha exposure is being suggested for the first time. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide ( NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model. Death induction in vitro was mediated by an increase in NO resulting in double strand DNA breaks and the activation of both the extrinsic and the intrinsic apoptotic pathways. Double strand DNA breaks could be reduced if NO inhibitor was present during fisetin treatment. Fisetin also inhibited the downstream components of the mTORC1 pathway through downregulation of levels of p70 S6 kinase and inducing hypo-phosphorylation of S6 Ri P kinase, eIF4B and eEF2K. NO inhibition restored phosphorylation of downstream effectors of mTORC1 and rescued cells from death. Fisetin induced Ca2+ entry through L-type Ca2+ channels and abrogation of Ca2+ influx reduced caspase activation and cell death. NO increase and increased Ca2+ were independent phenomenon. It was inferred that apoptotic death of acute monocytic leukemia cells was induced by fisetin through increased generation of NO and elevated Ca2+ entry activating the caspase dependent apoptotic pathways. Therefore, manipulation of NO production could be viewed as a potential strategy to increase efficacy of chemotherapy in acute monocytic leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4(+) and CD8(+) T cells secreting gamma interferon (IFN-gamma) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8(+) T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8(+) PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4(+) T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8(+) T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.