2 resultados para holistic education

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

When hosting XML information on relational backends, a mapping has to be established between the schemas of the information source and the target storage repositories. A rich body of recent literature exists for mapping isolated components of XML Schema to their relational counterparts, especially with regard to table configurations. In this paper, we present the Elixir system for designing industrial-strength mappings for real-world applications. Specifically, it produces an information-preserving holistic mapping that transforms the complete XML world-view (XML schema with constraints, XML documents XQuery queries including triggers and views) into a full-scale relational mapping (table definitions, integrity constraints, indices, triggers and views) that is tuned to the application workload. A key design feature of Elixir is that it performs all its mapping-related optimizations in the XML source space, rather than in the relational target space. Further, unlike the XML mapping tools of commercial database systems, which rely heavily on user inputs, Elixir takes a principled cost-based approach to automatically find an efficient relational mapping. A prototype of Elixir is operational and we quantitatively demonstrate its functionality and efficacy on a variety of real-life XML schemas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of prediction models is often based on ``abstract metrics'' that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging ``big data'' domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.