4 resultados para highways
em Indian Institute of Science - Bangalore - Índia
Resumo:
Urban sprawl is the outgrowth along the periphery of cities and along highways. Although an accurate definition of urban sprawl may be debated, a consensus is that urban sprawl is characterized by an unplanned and uneven pattern of growth, driven by multitude of processes and leading to inefficient resource utilization. Urbanization in India has never been as rapid as it is in recent times. As one of the fastest growing economies in the world, India faces stiff challenges in managing the urban sprawl, while ensuring effective delivery of basic services in urban areas. The urban areas contribute significantly to the national economy (more than 50% of GDP), while facing critical challenges in accessing basic services and necessary infrastructure, both social and economic. The overall rise in the population of the urban poor or the increase in travel times due to congestion along road networks are indicators of the effectiveness of planning and governance in assessing and catering for this demand. Agencies of governance at all levels: local bodies, state government and federal government, are facing the brunt of this rapid urban growth. It is imperative for planning and governance to facilitate, augment and service the requisite infrastructure over time systematically. Provision of infrastructure and assurance of the delivery of basic services cannot happen overnight and hence planning has to facilitate forecasting and service provision with appropriate financial mechanisms.
Resumo:
Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.
Resumo:
Urbanisation has evinced interest from a wide section of the society including experts, amateurs, and novices. The multidisciplinary scope of the subject invokes the interest from ecologists, to urban planners and civil engineers, to sociologists, to administrators and policy makers, students and finally the common man. With the development and infrastructure initiatives mostly around the urban centres, the impacts of urbanisation and sprawl would be on the environment and the natural resources. The wisdom lies in how effectively we plan the urban growth without - hampering the environment, excessively harnessing the natural resources and eventually disturbing the natural set-up. The research on these help urban residents and policymakers make informed decisions and take action to restore these resources before they are lost. Ultimately the power to balance the urban ecosystems rests with regional awareness, policies, administration practices, management issues and operational problems. This publication on urban systems is aimed at helping scientists, policy makers, engineers, urban planners and ultimately the common man to visualise how towns and cities grow over a period of time based on investigations in the regions around the highway and cities. Two important highways in Karnataka, South India, viz., Bangalore - Mysore highway and the Mangalore - Udupi highway, in Karnataka and the Tiruchirapalli - Tanjavore - Kumbakonam triangular road network in Tamil Nadu, South India, were considered in this investigation. Geographic Information System and Remote Sensing data were used to analyse the pattern of urbanisation. This was coupled with the spatial and temporal data from the Survey of India toposheets (for 1972), satellite imageries procured from National Remote Sensing Agency (NRSA) (LANDSAT TM for 1987 and IRS LISS III for 1999), demographic details from the Census of India (1971, 1981, 1991 and 2001) and the village maps from the Directorate of Survey Settlements and Land Records, Government of Karnataka. All this enabled in quantifying the increase in the built-up area for nearly three decades. With intent of identifying the potential sprawl zones, this could be modelled and projected for the future decades. Apart from these the study could quantify some of the metrics that could be used in the study of urban sprawl.
Resumo:
Moving shadow detection and removal from the extracted foreground regions of video frames, aim to limit the risk of misconsideration of moving shadows as a part of moving objects. This operation thus enhances the rate of accuracy in detection and classification of moving objects. With a similar reasoning, the present paper proposes an efficient method for the discrimination of moving object and moving shadow regions in a video sequence, with no human intervention. Also, it requires less computational burden and works effectively under dynamic traffic road conditions on highways (with and without marking lines), street ways (with and without marking lines). Further, we have used scale-invariant feature transform-based features for the classification of moving vehicles (with and without shadow regions), which enhances the effectiveness of the proposed method. The potentiality of the method is tested with various data sets collected from different road traffic scenarios, and its superiority is compared with the existing methods. (C) 2013 Elsevier GmbH. All rights reserved.