88 resultados para hierarchical entropy
em Indian Institute of Science - Bangalore - Índia
Resumo:
Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints.
Resumo:
We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.
Resumo:
The correlation dimension D 2 and correlation entropy K 2 are both important quantifiers in nonlinear time series analysis. However, use of D 2 has been more common compared to K 2 as a discriminating measure. One reason for this is that D 2 is a static measure and can be easily evaluated from a time series. However, in many cases, especially those involving coloured noise, K 2 is regarded as a more useful measure. Here we present an efficient algorithmic scheme to compute K 2 directly from a time series data and show that K 2 can be used as a more effective measure compared to D 2 for analysing practical time series involving coloured noise.
Resumo:
Learning automata arranged in a two-level hierarchy are considered. The automata operate in a stationary random environment and update their action probabilities according to the linear-reward- -penalty algorithm at each level. Unlike some hierarchical systems previously proposed, no information transfer exists from one level to another, and yet the hierarchy possesses good convergence properties. Using weak-convergence concepts it is shown that for large time and small values of parameters in the algorithm, the evolution of the optimal path probability can be represented by a diffusion whose parameters can be computed explicitly.
Resumo:
Systems of learning automata have been studied by various researchers to evolve useful strategies for decision making under uncertainity. Considered in this paper are a class of hierarchical systems of learning automata where the system gets responses from its environment at each level of the hierarchy. A classification of such sequential learning tasks based on the complexity of the learning problem is presented. It is shown that none of the existing algorithms can perform in the most general type of hierarchical problem. An algorithm for learning the globally optimal path in this general setting is presented, and its convergence is established. This algorithm needs information transfer from the lower levels to the higher levels. Using the methodology of estimator algorithms, this model can be generalized to accommodate other kinds of hierarchical learning tasks.
Resumo:
An approach is presented for hierarchical control of an ammonia reactor, which is a key unit process in a nitrogen fertilizer complex. The aim of the control system is to ensure safe operation of the reactor around the optimal operating point in the face of process variable disturbances and parameter variations. The four different layers perform the functions of regulation, optimization, adaptation, and self-organization. The simulation for this proposed application is conducted on an AD511 hybrid computer in which the AD5 analog processor is used to represent the process and the PDP-11/ 35 digital computer is used for the implementation of control laws. Simulation results relating to the different layers have been presented.
Resumo:
A learning automaton operating in a random environment updates its action probabilities on the basis of the reactions of the environment, so that asymptotically it chooses the optimal action. When the number of actions is large the automaton becomes slow because there are too many updatings to be made at each instant. A hierarchical system of such automata with assured c-optimality is suggested to overcome that problem.The learning algorithm for the hierarchical system turns out to be a simple modification of the absolutely expedient algorithm known in the literature. The parameters of the algorithm at each level in the hierarchy depend only on the parameters and the action probabilities of the previous level. It follows that to minimize the number of updatings per cycle each automaton in the hierarchy need have only two or three actions.
Resumo:
Recent axiomatic derivations of the maximum entropy principle from consistency conditions are critically examined. We show that proper application of consistency conditions alone allows a wider class of functionals, essentially of the form ∝ dx p(x)[p(x)/g(x)] s , for some real numbers, to be used for inductive inference and the commonly used form − ∝ dx p(x)ln[p(x)/g(x)] is only a particular case. The role of the prior densityg(x) is clarified. It is possible to regard it as a geometric factor, describing the coordinate system used and it does not represent information of the same kind as obtained by measurements on the system in the form of expectation values.
Resumo:
Presented in this letter is a critical discussion of a recent paper on experimental investigation of the enthalpy, entropy and free energy of formation of gallium nitride (GaN) published in this journal [T.J. Peshek, J.C. Angus, K. Kash, J. Cryst. Growth 311 (2008) 185-189]. It is shown that the experimental technique employed detects neither the equilibrium partial pressure of N-2 corresponding to the equilibrium between Ga and GaN at fixed temperatures nor the equilibrium temperature at constant pressure of N-2. The results of Peshek et al. are discussed in the light of other information on the Gibbs energy of formation available in the literature. Entropy of GaN is derived from heat-capacity measurements. Based on a critical analysis of all thermodynamic information now available, a set of optimized parameters is identified and a table of thermodynamic data for GaN developed from 298.15 to 1400 K.
Resumo:
An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.
Resumo:
An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.
Resumo:
The term acclimation has been used with several connotations in the field of acclimatory physiology. An attempt has been made, in this paper, to define precisely the term “acclimation” for effective modelling of acclimatory processes. Acclimation is defined with respect to a specific variable, as cumulative experience gained by the organism when subjected to a step change in the environment. Experimental observations on a large number of variables in animals exposed to sustained stress, show that after initial deviation from the basal value (defined as “growth”), the variables tend to return to basal levels (defined as “decay”). This forms the basis for modelling biological responses in terms of their growth and decay. Hierarchical systems theory as presented by Mesarovic, Macko & Takahara (1970) facilitates modelling of complex and partially characterized systems. This theory, in conjunction with “growth-decay” analysis of biological variables, is used to model temperature regulating system in animals exposed to cold. This approach appears to be applicable at all levels of biological organization. Regulation of hormonal activity which forms a part of the temperature regulating system, and the relationship of the latter with the “energy” system of the animal of which it forms a part, are also effectively modelled by this approach. It is believed that this systematic approach would eliminate much of the current circular thinking in the area of acclimatory physiology.
Resumo:
It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy ae fh (i) d mu = lambda (i) for i = 1, 2, ...,... kthe maximizer of entropy is an f (0) that is proportional to exp(I c pound (i) h (i) ) for some choice of c (i) . An extension of this to a continuum of constraints and many examples are presented.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The document images that are fed into an Optical Character Recognition system, might be skewed. This could be due to improper feeding of the document into the scanner or may be due to a faulty scanner. In this paper, we propose a skew detection and correction method for document images. We make use of the inherent randomness in the Horizontal Projection profiles of a text block image, as the skew of the image varies. The proposed algorithm has proved to be very robust and time efficient. The entire process takes less than a second on a 2.4 GHz Pentium IV PC.