2 resultados para health diseases
em Indian Institute of Science - Bangalore - Índia
Resumo:
PIP: A delphi study was conducted to identify or envision health scenarios in India by the year 2000. Questionnaires consisting of 48 questions on 5 areas (diagnosis and therapy; family planning; pharmaceuticals and drugs; biochemical and biomedical research; health services) were mailed to 250 experts in India. 36 responded. Results were compiled and mailed back to the respondents for changes and comments. 17 people responded. Results of the delphi study shows that policy decisions with respect to compulsory family planning as well as health education at secondary school level will precede further breakthroughs in birth control technology. Non operation reversible sterilization procedures, immunological birth control, Ayurvedic medicines for contraception and abortion, and selection of baby's sex are all possible by 2000 thereafter. Complete eradication of infectious diseases, malnutrition and associated diseases is considered unlikely before 2000, as are advances in biomedical research. Changes in health services (e.g., significant increases in hospital beds and doctors, cheap bulk drugs), particularly in rural areas, are imminent, leading to prolonging of life expectancy to 70 years. Genetic engineering may provide significant breakthroughs in the prevention of malignancies and cardiac disorders. The India delphi study is patterned after a similar delphi study conducted in the U.S. by Smith, Kline and French (SKF) Laboratories in 1968. The SKF study was able to predict some breakthroughs with basic research which have been realized.
Resumo:
Background: A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods: Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-gamma and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results: M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-gamma production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions: The pattern of immune target recognition is different in regard to IFN-gamma and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.