19 resultados para haptic motion control

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-axis micromanipulators, whose tip orientation and position can be controlled in real time in the scanning plane, enable versatile probing systems for 2.5-D nanometrology. The key to achieve high-precision probing systems is to accurately control the interaction point of the manipulator tip when its orientation is changed. This paper presents the development of a probing system wherein the deviation in the end point due to large orientation changes is controlled to within 10 nm. To achieve this, a novel micromanipulator design is first proposed, wherein the end point of the tip is located on the axis of rotation. Next, the residual tip motion caused by fabrication error and actuation crosstalk is modeled and a systematic method to compensate it is presented. The manipulator is fabricated and the performance of the developed scheme to control tip position during orientation change is experimentally validated. Subsequently, the two-axis probing system is demonstrated to scan the full top surface of a micropipette down to a diameter of 300 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to enable seamless transformation of product concepts to CAD models. This necessitates availability of 3D product sketches. The present work concerns intuitive generation of 3D strokes and intrinsic support for space sharing and articulation for the components of the product being sketched. Direct creation of 3D strokes in air lacks in precision, stability and control. The inadequacy of proprioceptive feedback for the task is complimented in this work with stereo vision and haptics. Three novel methods based on pencil-paper interaction analogy for haptic rendering of strokes have been investigated. The pen-tilt based rendering is simpler and found to be more effective. For the spatial conformity, two modes of constraints for the stylus movements, corresponding to the motions on a control surface and in a control volume have been studied using novel reactive and field based haptic rendering schemes. The field based haptics, which in effect creates an attractive force field near a surface, though non-realistic, provided highly effective support for the control-surface constraints. The efficacy of the reactive haptic rendering scheme for the constrained environments has been demonstrated using scribble strokes. This can enable distributed collaborative 3D concept development. The notion of motion constraints, defined through sketch strokes enables intuitive generation of articulated 3D sketches and direct exploration of motion annotations found in most product concepts. The work, thus, establishes that modeling of the constraints is a central issue in 3D sketching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instability in conventional haptic rendering destroys the perception of rigid objects in virtual environments. Inherent limitations in the conventional haptic loop restrict the maximum stiffness that can be rendered. In this paper we present a method to render virtual walls that are much stiffer than those achieved by conventional techniques. By removing the conventional digital haptic loop and replacing it with a part-continuous and part-discrete time hybrid haptic loop, we were able to render stiffer walls. The control loop is implemented as a combinational logic circuit on an field-programmable gate array. We compared the performance of the conventional haptic loop and our hybrid haptic loop on the same haptic device, and present mathematical analysis to show the limit of stability of our device. Our hybrid method removes the computer-intensive haptic loop from the CPU-this can free a significant amount of resources that can be used for other purposes such as graphical rendering and physics modeling. It is our hope that, in the future, similar designs will lead to a haptics processing unit (HPU).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the linear dynamics and active control of a string travelling with uniform velocity is presented. Discrete elastic supports are introduced along the length of the string. Finite element formulation is adopted to obtain the governing equations of motion. The velocity of translation introduces gyroscopic terms in the system equations. The effect of translation and the discrete elastic supports on the free vibration solution is studied. The solution is utilized in actively controlling the string vibrations due to an initial disturbance. The control, affected in modal space, is optimal with respect to a quadratic performance index. Numerical results are presented to demonstrate the effectiveness of the control strategy in regulating the travelling string vibrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of piezoceramic materials in actuation and sensing of vibration is of current interest. Potential and more popular applications of piezoceramics are probably in the field of active vibration control. However, the objective of this work is to investigate the effect of shunted piezoceramics as passive vibration control devices when bonded to a host structure. Resistive shunting of a piezoceramic bonded to a cantilevered duralumin beam has been investigated. The piezoceramic is connected in parallel to an electrical network comprising of resistors and inductors. The piezoceramic is a capacitor that stores and discharges electrical energy that is transformed from the mechanical motion of the structure to which it is bonded. A resistor across the piezoceramic would be termed as a resistively shunted piezoceramic. Similarly, an inductor across the piezoceramic is termed as a resonantly shunted piezoceramic. In this study, the effect of resistive shunting on the nature of damping enhancement to the host structure has been investigated. Analytical studies are presented along with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a real-time haptics-aided injection technique for biological cells using miniature compliant mechanisms. Our system consists of a haptic robot operated by a human hand, an XYZ stage for micro-positioning, a camera for image capture, and a polydimethylsiloxane (PDMS) miniature compliant device that serves the dual purpose of an injecting tool and a force-sensor. In contrast to existing haptics-based micromanipulation techniques where an external force sensor is used, we use visually captured displacements of the compliant mechanism to compute the applied and reaction forces. The human hand can feel the magnified manipulation force through the haptic device in real-time while the motion of the human hand is replicated on the mechanism side. The images are captured using a camera at the rate of 30 frames per second for extracting the displacement data. This is used to compute the forces at the rate of 30 Hz. The force computed in this manner is sent at the rate of 1000 Hz to ensure stable haptic interaction. The haptic cell-manipulation system was tested by injecting into a zebrafish egg cell after validating the technique at a size larger than that of the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a dense multi-hop network of mobile nodes capable of applying adaptive power control, we consider the problem of finding the optimal hop distance that maximizes a certain throughput measure in bit-metres/sec, subject to average network power constraints. The mobility of nodes is restricted to a circular periphery area centered at the nominal location of nodes. We incorporate only randomly varying path-loss characteristics of channel gain due to the random motion of nodes, excluding any multi-path fading or shadowing effects. Computation of the throughput metric in such a scenario leads us to compute the probability density function of random distance between points in two circles. Using numerical analysis we discover that choosing the nearest node as next hop is not always optimal. Optimal throughput performance is also attained at non-trivial hop distances depending on the available average network power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the optimal flow control of an ATM switching element in a broadband-integrated services digital network. We model the switching element as a stochastic fluid flow system with a finite buffer, a constant output rate server, and a Gaussian process to characterize the input, which is a heterogeneous set of traffic sources. The fluid level should be maintained between two levels namely b1 and b2 with b1motion analysis and derive the limiting distribution for the queue length touching the critical levels. Also the application of instantaneous control on the ATM network is considered

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment. The results of simulations with various drive input signals show that the yaw stability controller using fuzzy logic proposed in the current study has a good performance in situations involving unexpected yaw motion. The yaw rate errors of a vehicle having the proposed controller are notably smaller than an uncontrolled vehicle's, and the vehicle having the yaw stability controller recovers lateral distance and desired yaw rate more quickly than the uncontrolled vehicle.