77 resultados para gravity anomaly
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider counterterms for odd dimensional holographic conformal field theories (CFTs). These counterterms are derived by demanding cutoff independence of the CFT partition function on S-d and S-1 x Sd-1. The same choice of counterterms leads to a cutoff independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are nondynamical and resemble a Dirac-Born-Infeld generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cutoff dependence.
Resumo:
Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.
Resumo:
One of the major problems faced by coal based thermal power stations is handling and disposal of ash. Among the various uses of fly ash, the major quantity of ash produced is used in geotechnical engineering applications such as construction of embankments, as a backfill material, etc. The generally low specific gravity of fly ash resulting in low unit weight as compared to soils is an attractive property for its use in geotechnical applications. In general, specific gravity of coal ash lies around 2.0 but can vary to a large extent (1.6 to 3.1). The variation of specific gravity of coal ash is due to the combination of various factors like gradation, particle shape, and chemical composition. Since specific gravity is an important physical property, it has been studied in depth for three Indian coal ashes and reported in this paper.
Resumo:
Einstein's gravitational field is non-minimally coupled to a self-interacting scalar field in the presence of radiation. Such a theory can give rise to a phase transition associated with a change of sign of the gravitational “constant”. In our approach, the criterion for stability is formulated in terms of an effective potential, the phase-transition takes place due to temperature dependence of the scalar self-interaction coupling constant.
Resumo:
The free convection problem with nonuniform gravity finds applications in several fields. For example, centrifugal gravity fieldsarisein many rotating machinery applications. A gravity field is also created artificially in an orbital space station by rotation. The effect of nonuniform gravity due to the rotation of isothermal or nonisothermal plates has been studied by several authors [l-5] using various mathematical techniques.
Resumo:
A simple volume dilatometer is described for the precise measurements of volume changes as a function of temperature in liquid mixtures. The expansivity of (cyclohexane + acetic anhydride) in the critical region was measured. The critical solution temperature Tc was approached to within 9 mK. For T > (Tc + 0.3 K), the results results follow both a logarithmic and a power-law behaviour with an exponent ≈ 1/8. But for T < (Tc + 0.3 K), the results seem to be affected possibly by gravity or temperature gradients. In this region, the expected expansivity anomaly is rounded off to a cusp. The expansivity shows a reduced anomaly for off-critical compositions. A discussion of the local extremum and a correlation between negative expansivity and the resistivity anomaly are also given.
Resumo:
The stability characteristics of Alfvén Internal gravity waves for an inviscid, nondissipative, Boussinesq fluid undergoing shear in the presence of a density discontinuity with and without a rigid boundary is studied.
Resumo:
It is shown, in the composite fermion models studied by 't Hooft and others, that the requirements of Adler-Bell-Jackiw anomaly matching and n-independence are sufficient to fix the indices of composite representations. The third requirement, namely that of decoupling relations, follows from these two constraints in such models and hence is inessential.
Resumo:
The paper reports a detailed determination of the coexistence curve for the binary liquid system acetonitrile+cyclohexane, which have very closely matched densities and the data points get affected by gravity only for t=(Tc−T)/ Tc[approximately-equal-to]10−6. About 100 samples were measured over the range 10−6
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
A class of exact, self-similar, time-dependent solutions describing free surface flows under gravity is found which extends the self-propagating class of solutions discovered earlier by Freeman (1972) to those which decay with time.