44 resultados para graph theory, functional connectivity, rs-fMRI, nocturnal frontal lobe epilepsy (NFLE)
em Indian Institute of Science - Bangalore - Índia
Resumo:
A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.
Resumo:
Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.
Resumo:
The paper presents for the first time a fully computerized method for structural synthesis of geared kinematic chains which can be used to derive epicyclic gear drives. The method has been formulated on the basis of representing these chains by their graphs, the graphs being in turn represented algebraically by their vertex-vertex incidence matrices. It has thus been possible to make advantageous use of concepts and results from graph theory to develop a method amenable for implementation on a digital computer. The computerized method has been applied to the structural synthesis of single-freedom geared kinematic chains with up to four gear pairs, and the results obtained thereform are presented and discussed.
Resumo:
Three new procedures - in the context of estimation of virial coefficients and summation of the partial virial series for hard discs and hard spheres - are proposed. They are based on the parametrised Euler transformation, a novel resummation, identity and the ε-convergence methods respectively. A comparison with other estimates (molecular dynamics, graph theory and empirical methods) reveals satisfactory agreement.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.
Resumo:
Using the link-link incidence matrix to represent a simple-jointed kinematic chain algebraic procedures have been developed to determine its structural characteristics such as the type of freedom of the chain, the number of distinct mechanisms and driving mechanisms that can be derived from the chain. A computer program incorporating these graph theory based procedures has been applied successfully for the structural analysis of several typical chains.
Resumo:
Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.
Resumo:
Contraction of an edge e merges its end points into a new single vertex, and each neighbor of one of the end points of e is a neighbor of the new vertex. An edge in a k-connected graph is contractible if its contraction does not result in a graph with lesser connectivity; otherwise the edge is called non-contractible. In this paper, we present results on the structure of contractible edges in k-trees and k-connected partial k-trees. Firstly, we show that an edge e in a k-tree is contractible if and only if e belongs to exactly one (k + 1) clique. We use this characterization to show that the graph formed by contractible edges is a 2-connected graph. We also show that there are at least |V(G)| + k - 2 contractible edges in a k-tree. Secondly, we show that if an edge e in a partial k-tree is contractible then e is contractible in any k-tree which contains the partial k-tree as an edge subgraph. We also construct a class of contraction critical 2k-connected partial 2k-trees.
Resumo:
The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)greater-or-equal, slantedχ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)less-than-or-equals, slant2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.