83 resultados para granular isidia

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To capture shear localization in the flow of dense granular materials in a continuum description, it has earlier been proposed that granular materials be treated as Cosserat, or micropolar, continua. Here, we provide experimental verification of the kinematic Cosserat effect, or the deviation of the particle spin from the material spin induced by the velocity gradient. Contrary to earlier belief, we find this effect to be sizable even outside the shear layers. Remarkably, the particles and material elements spin in opposite directions in flow through a hopper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hopping conductivity of granular metals is known to be of the form sigma varies as exp (-(T0/T)12/) in the temperature range 20K

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherently moving flocks of birds, beasts, or bacteria are examples of living matter with spontaneous orientational order. How do these systems differ from thermal equilibrium systems with such liquid crystalline order? Working with a fluidized monolayer of macroscopic rods in the nematic liquid crystalline phase, we find giant number fluctuations consistent with a standard deviation growing linearly with the mean, in contrast to any situation where the central limit theorem applies. These fluctuations are long-lived, decaying only as a logarithmic function of time. This shows that flocking, coherent motion, and large-scale inhomogeneity can appear in a system in which particles do not communicate except by contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid granular flows are defined as flows in which the time scales for the particle interactions are small compared to the inverse of the strain rate, so that the particle interactions can be treated as instantaneous collisions. We first show, using Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.6 are rapid granular flows. Since collisions are instantaneous, a kinetic theory approach for the constitutive relations is most appropriate, and we present kinetic theory results for different microscopic models for particle interaction. The significant difference between granular flows and normal fluids is that energy is not conserved in a granular flow. The differences in the hydrodynamic modes caused by the non-conserved nature of energy are discussed. Going beyond the Boltzmann equation, the effect of correlations is studied using the ring kinetic approximation, and it is shown that the divergences in the viscometric coefficients, which are present for elastic fluids, are not present for granular flows because energy is not conserved. The hydrodynamic model is applied to the flow down an inclined plane. Since energy is not a conserved variable, the hydrodynamic fields in the bulk of a granular flow are obtained from the mass and momentum conservation equations alone. Energy becomes a relevant variable only in thin 'boundary layers' at the boundaries of the flow where there is a balance between the rates of conduction and dissipation. We show that such a hydrodynamic model can predict the salient features of a chute flow, including the flow initiation when the angle of inclination is increased above the 'friction angle', the striking lack of observable variation of the volume fraction with height, the observation of a steady flow only for certain restitution coefficients, and the density variations in the boundary layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A formal way of deriving fluctuation-correlation relations in dense sheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of the wall stress in a granular material sheared in a cylindrical Couette cell, as a function of the distance from the free surface. Our results shows that when the material is static, all components of the stress saturate to constant values within a short distance from the free surface, in conformity with earlier experiments and theoretical predictions. When the material is sheared by rotating the inner cylinder at a constant rate, the stresses are remarkably altered. The radial normal stress does not saturate, and increases even more rapidly with depth than the linear hydrostatic pressure profile. The axial shear stress changes sign on shearing, and its magnitude increases with depth. These results are discussed in the context of the predictions of the classical and Cosserat plasticity theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The striking lack of observable variation of the volume fraction with height in the center of a granular flow down an inclined plane is analysed using constitutive relations obtained from kinetic theory. It is shown that the rate of conduction in the granular energy balance equation is O(delta(2)) smaller than the rate of production of energy due to mean shear and the rate of dissipation due to inelastic collisions, where the small parameter delta = (d/(1 - e(n))H-1/2), d is the particle diameter, en is the normal coefficient of restitution and H is the thickness of the flowing layer. This implies that the volume fraction is a constant in the leading approximation in an asymptotic analysis in small delta. Numerical estimates of both the parameter delta and its pre-factor are obtained to show that the lack of observable variation of the volume fraction with height can be explained by constitutive relations obtained from kinetic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.