8 resultados para goal orientations

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a frontier based algorithm for searching multiple goals in a fully unknown environment, with only information about the regions where the goals are most likely to be located. Our algorithm chooses an ``active goal'' from the ``active goal list'' generated by running a Traveling Salesman Problem (Tsp) routine with the given centroid locations of the goal regions. We use the concept of ``goal switching'' which helps not only in reaching more number of goals in given time, but also prevents unnecessary search around the goals that are not accessible (surrounded by walls). The simulation study shows that our algorithm outperforms Multi-Heuristic LRTA* (MELRTA*) which is a significant representative of multiple goal search approaches in an unknown environment, especially in environments with wall like obstacles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of goal seeking by robots in unknown environments. We present a frontier based algorithm for finding a route to a goal in a fully unknown environment, where information about the goal region (GR), the region where the goal is most likely to be located, is available. Our algorithm efficiently chooses the best candidate frontier cell, which is on the boundary between explored space and unexplored space, having the maximum ``goal seeking index'', to reach the goal in minimal number of moves. Modification of the algorithm is also proposed to further reduce the number of moves toward the goal. The algorithm has been tested extensively in simulation runs and results demonstrate that the algorithm effectively directs the robot to the goal and completes the search task in minimal number of moves in bounded as well as unbounded environments. The algorithm is shown to perform as well as a state of the art agent centered search algorithm RTAA*, in cluttered environments if exact location of the goal is known at the beginning of the mission and is shown to perform better in uncluttered environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.