2 resultados para glutaminase
em Indian Institute of Science - Bangalore - Índia
Resumo:
GMP synthetase, a class I amidotransferase, catalyzes the last step of the purine biosynthetic pathway, where ammonia from glutamine is incorporated into xanthosine 5'-monophospate to yield guanosine 5'-monnophosphate as the main product. Combined biochemical, structural, and computational studies of glutamine amidotransferases have revealed the existence of physically separate active sites connected by molecular tunnels that efficiently transfer ammonia from the glutaminase site to the synthetase site. Here, we have investigated aspects of ammonia channeling in P. falciparum GMP synthetase using biochemical assays in conjunction with N-15-edited proton NMR spectroscopy. Our results suggest that (1) ammonia released from glutamine is not equilibrated with the external medium (2) saturating concentrations of glutamine do not obliterate the incorporation of external ammonia into GMP, and (3) ammonia in the external medium can access the thioester intermediate when the ATPPase domain is bound to substrates. Further, mutation of Cys-102 to alanine confirmed its identity as the catalytic residue in the glutaminase domain, and ammonia-dependent assays on the mutant indicated glutamine to be a partial uncompetitive inhibitor of the enzyme.
Resumo:
Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal ``glutaminase'' (GAT) and C-terminal ``synthetase'' domain. The enzyme is identified as a potential target for anticancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site.