36 resultados para glucose intolerance

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Post-absorptive glucose lowering (PALG) is observed in individuals with glucose intolerance and in healthy individuals. We report a prevalence of about 23% among healthy Asian Indians. Individuals with PALG are characterized by leaner phenotype, low body fat percentage, increased insulin sensitivity and higher fasting glucose levels. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (>200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and targets. Some are effective in slowing formation of glucose in intestines by inhibiting alpha-glucosidases (e.g., salacia/saptarangi). Knowledge gained from French lilac on active guanidine group helped developing Metformin (1,1-dimethylbiguanide) one of the popular drugs in use. One strategy of keeping sugar content in diets in check is to use artificial sweeteners with no calories, no glucose or fructose and no effect on blood glucose (e.g., steviol, erythrytol). However, the three commonly used non-caloric artificial sweetener's, saccharin, sucralose and aspartame later developed glucose intolerance, the very condition they are expected to evade. Ideal way of keeping blood glucose under 6 mM and HbAlc, the glycation marker of hemoglobin, under 7% in blood is to correct the defects in signals that allow glucose flow into glycogen, still a difficult task with drugs and diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical entrapment was used as an approach to achieve thermal stabilization of enzymes. The ti values for the thermoinactivation of glucose oxidase and glucoamylase were increased several-fold by their entrapment in polyacrylamide gels. In polyacrylate gels the individual enzymes behaved differently, probably owing to microenvironmental effects arising by the polyelectrolyte nature of the carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During preimplantation development, embryos of many species are known to express up to five isoforms of the facilitative glucose transporter proteins (GLUT). Development of hamster blastocysts is inhibited by glucose. We therefore investigated GLUT isoform and insulin receptor (IR) expression in hamster preimplantation embryos cultured in glucose-free medium from the 8-cell stage onwards. We show that GLUT1, 3 and 8 mRNA are constitutively expressed from the 8-cell to the blastocyst stage. The IR is expressed from the morula stage onwards. Messenger RNA of the insulin-responsive GLUT4 was not detected at any stage. GLUT1 and 3 were localised by immunocytochemistry. GLUT1 was expressed in both embryoblast and trophoblast, in the latter, mainly in basal and lateral membranes directed towards the blastocoel. and embryoblast. GLUT3 was exclusively localised in the apical. membrane of trophoblast cells. We show that hamster preimplantation embryos express several GLUT isoforms thus closely resembling embryos of other mammalian species. Despite endogenous IR expression, the insulin-sensitive isoform GLUT4 was not expressed, indicating that the insulin-mediated glucose uptake known from classical insulin target cells may not be relevant for hamster blastocysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosensors have gained immense acceptance in the field of medical diagnostics, besides environmental, food safety and biodefence applications due to its attributes of real-time and rapid response. This synergistic combination of biotechnology and microelectronics comprises a biological recognition element coupled with a compatible transducer device. Diabetes is a disease of major concern since the ratio of world population suffering from it is increasing at an alarming rate and therefore the need for development of accurate and stable glucose biosensors is evident. There are many commercial glucose biosensors available yet some limitations need attention. This review presents a detailed account of the polypyrrole based amperometric glucose biosensors. The polymer polypyrrole is used extensively as a matrix for immobilization of glucose oxidase enzyme owing to its favourable features such as stability under ambient conditions, conductivity that allows it to be used as an electron relay, ability to be polymerized under neutral and aqueous mild conditions, and more. The simple one-step electrodeposition on the electrode surface allows easy entrapment of the enzyme. The review is structured into three categories (a) the first-stage biosensors: which report the studies from the inception of use of polypyrrole in glucose biosensors during which time the role of the polymer and the use of mediators was established. This period saw extensive work by two separate groups of Schuhmann and Koopal who contributed a great deal in understanding the electron transfer pathways in polypyrrole based glucose biosensors, (b) the second-stage biosensors: which highlight the shift of polypyrrole from a conventional matrix to composite matrices with extensive use of mediators focused at improving the selectivity of response, and (c) third-stage biosensors: the remarkable properties of nanoparticles and carbon nanotubes and their outstanding ability to mediate electrontransfers have seen their indispensable use in conjugation with polypyrrole for development of glucose biosensors with improved sensitivity and stability characteristics which is accounted in the review, which thus traces the evolution of polypyrrole from a conventional matrix, to composites and thence to the form of nanotube arrays, with the objective of addressing the vital issue of diabetes management through the development of stable and reliable glucose biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of surf ace-modified carbohydrates with locked, axial-rich conformations and bipolarofacial architectures has been developed with the aid of carbocyclic ring annulation. These novel trans-decalin-based carbohydrates have been synthesized, from simple aromatic precursors such as tetralin, through the ozonolysis of an appropriately protected allylic alcohol, followed by a cascade of intramolecular acetalizations to generate the sugar pyran moiety. The stereoselective synthesis of (racemic) cyclohexane-annulated 0-glucopyranoside and a-glucofuranoside from a common annulated trans-cyclohexadiene diol (trans-CHD) precursor under-scores the versatility of our approach. The efficacy of the annulation stratagem in generating carbohydrate diversity has been demonstrated through the synthesis of two regioisomeric annulated gulose derivatives, which differ only in the site of ring annulation on the sugar moiety. The mapping of the MLP surface and solid-state architecture of the new sugar shows that cycloalkane annulation results in surface modification and fine-tuning of sugar hydrophilicity. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of surf ace-modified carbohydrates with locked, axial-rich conformations and bipolarofacial architectures has been developed with the aid of carbocyclic ring annulation. These novel trans-decalin-based carbohydrates have been synthesized, from simple aromatic precursors such as tetralin, through the ozonolysis of an appropriately protected allylic alcohol, followed by a cascade of intramolecular acetalizations to generate the sugar pyran moiety. The stereoselective synthesis of (racemic) cyclohexane-annulated 0-glucopyranoside and a-glucofuranoside from a common annulated trans-cyclohexadiene diol (trans-CHD) precursor under-scores the versatility of our approach. The efficacy of the annulation stratagem in generating carbohydrate diversity has been demonstrated through the synthesis of two regioisomeric annulated gulose derivatives, which differ only in the site of ring annulation on the sugar moiety. The mapping of the MLP surface and solid-state architecture of the new sugar shows that cycloalkane annulation results in surface modification and fine-tuning of sugar hydrophilicity. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of chloromycetin has been found to enhance the oxygen uptake of the gut of the silkworm. The possibility that this increase might have been due to a thinning of the gut wall has been ruled out since the reduction in gut weight set in much later. Although glucose ultilization by the gut has been found to be increased in vitro, increase in oxygen uptake has not been affected in the presence of glucose. The possibility of a hormonal stimulation has been discussed.