17 resultados para globule leucocytes
em Indian Institute of Science - Bangalore - Índia
Resumo:
We demonstrate a chain length dependent crossover in the structural properties of linear hydrocarbon (n-alkane) chains using detailed atomistic simulations in explicit water. We identify a number of exotic structures of the polymer chain through energy minimization of representative snapshots collected from molecular dynamics trajectory. While the collapsed state is ring-like (circular) for small chains (CnH2n+2; n <= 20) and spherical for very long ones (n = 100), we find the emergence of ordered helical structures at intermediate lengths (n similar to 40). We find different types of disordered helices and toroid-like structures at n = 60. We also report a sharp transition in the stability of the collapsed state as a function of the chain length through relevant free energy calculations. While the collapsed state is only marginally metastable for C20H42, a clear bistable free energy surface emerges only when the chain is about 30 monomers long. For n = 30, the polymer exhibits an intermittent oscillation between the collapsed and the coil structures, characteristic of two stable states separated by a small barrier.
Resumo:
Molten globule-like intermediates have been shown to occur during protein folding and are thought to be involved in protein translocation and membrane insertion. However, the determinants of molten globule stability and the extent of specific packing in molten globules is currently unclear. Using far- and near-UV CD and intrinsic and ANS fluorescence, we show that four periplasmic binding proteins (LBP, LIVBP, MBP, and RBP) form molten globules at acidic pH values ranging from 3.0 to 3.4. Only two of these (LBP and LIVBP) have similar sequences, but all four proteins adopt similar three-dimensional structures. We found that each of the four molten globules binds to its corresponding ligand without conversion to the native state. Ligand binding affinity measured by isothermal titration calorimetry for the molten globule state of LIVBP was found to be comparable to that of the corresponding native state, whereas for LBP, MBP, and RBP, the molten globules bound ligand with approximately 5-30-fold lower affinity than the corresponding native states. All four molten globule states exhibited cooperative thermal unfolding assayed by DSC. Estimated values of Delta C-p of unfolding show that these molten globule states contain 28-67% of buried surface area relative to the native states. The data suggest that molten globules of these periplasmic binding proteins retain a considerable degree of long range order. The ability of these sequentially unrelated proteins to form highly ordered molten globules may be related to their large size as well as an intrinsic property of periplasmic binding protein folds.
Resumo:
A central question in biological chemistry is the minimal structural requirement of a protein that would determine its specificity and activity, the underlying basis being the importance of the entire structural element of a protein with regards to its activity vis a vis the overall integrity and stability of the protein. Although there are many reports on the characterization of protein folding/ unfolding intermediates, with considerable secondary structural elements but substantial loss of tertiary structure, none of them have been reported to show any activity toward their respective ligands. This may be a result of the conditions under which such intermediates have been isolated or due to the importance of specific structural elements for the activity. In this paper we report such an intermediate in the unfolding of peanut agglutinin that seems to retain, to a considerable degree, its carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and the quaternary association in legume lectins in particular, where precise subunit topology is required for their biologic activities.
Resumo:
The binding of 1-anilino-8-naphthalene-sulfonic acid to globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESIMS). Mass spectra of apomyoglobin recorded in the pH range 2−7 establish that maximal ANS binding is observed at pH 4.0. As many as seven distinct species may be observed in the gas phase which correspond to protein molecules containing one to six molecules of bound ANS. At neutral pH only a single molecule of ANS is bound. In the case of cytochrome c, maximal binding is observed at pH 4.0, with five molecules being bound. Binding is suppressed at neutral pH. In both cases ESIMS demonstrates maximal ANS binding at pH values where the proteins have been reported to exist in molten globule states. ANS binding is not observed for lysozyme, which has a tightly folded structure over the entire pH range. Reduction of disulfide bonds in lysozyme leads to the detection of ANS-bound species at neutral pH. Binding is suppressed at low pH due to complete unfolding of the reduced protein. The results suggest that ESIMS may provide a convenient method of probing the stoichiometry and distribution of dye complexes with molten protein globules
Resumo:
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.
Resumo:
Seven double cysteine mutants of maltose binding protein (MBP) were generated with one each in the active cleft at position 298 and the second cysteine distributed over both domains of the protein. These cysteines were spin labeled and distances between the labels in biradical pairs determined by pulsed double electron-electron resonance (DEER) measurements. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structure of MBP without maltose and were found to be in excellent agreement. MBP is in a molten globule state at pH 3.3 and is known to still bind its substrate maltose. The nitroxide spin label was sufficiently stable under these conditions. In preliminary experiments, DEER measurements were carried out with one of the mutants yielding a broad distance distribution as was to be expected if there is no explicit tertiary structure and the individual helices pointing into all possible directions.
Resumo:
The microstructure of an austenitic SS 304L rapidly quenched from its semi-solid state shows a unique annular austenitic ring in between the core of each globule and its ferritic outer layer. On the basis of experimental results and microstructural analysis, it is proposed that the ring is formed as a result of preferential austenitic phase nucleation in a small quantity of liquid entrapped between adjacent solid globules during rapid quenching, in spite of the fact that ferrite is the thermodynamically stable phase for the alloy. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.
Resumo:
Peanut agglutinin is a homotetrameric nonglycosylated protein. The protein has a unique open quaternary structure. Molecular dynamics simulations have been employed follow the atomistic details of its unfolding at different temperatures. The early events of the deoligomerization of the protein have been elucidated in the present study. Simulation trajectories of the monomer as well as those of the tetramer have been compared and the tetramer is found to be substantially more stable than its monomeric counterpart. The tetramer shows retention of most of its.. secondary structure but considerable loss of the tertiary structure at high temperature. e generation of a This observation impies the molten globule-like intermediate in the later stages of deoligomerization. The quaternary structure of the protein has weakened to a large extent, but none of the subunits are separated. In addition, the importance of the metal-binding to the stability of the protein structure has also been investigated. Binding of the metal ions not only enhances the local stability of the metal-ion binding loop, but also imparts a global stability to the overall structure. The dynamics of different interfaces vary significantly as probed through interface clusters. The differences are substantially enhanced at higher temperatures. The dynamics and the stability of the interfaces have been captured mainly by cluster analysis, which has provided detailed information on the thermal deoligomerization of the protein.
Resumo:
Peanut Agglutinin (PNA) is a homotetrameric protein with a very unusual open quaternary structure. During denaturation, it first dissociates into a molten globule like state, which subsequently undergoes complete denaturation. Urea denaturation of PNA at neutral pH has been studied by intrinsic fluorescence spectroscopy and has been fitted to a three state model, A(4) double left right arrow 4I double left right arrow 4U, to get all the relevant thermodynamic parameters. Urea denaturation leads to continuous red shift of wavelength maxima. The molten globule like state is formed in a short range of urea concentration. Refolding of the denatured PNA has been attempted by intrinsic fluorescence study. Refolding by instantaneous dilution shows the occurrence of the formation of an intermediate at a relatively rapid rate, within few seconds. The transition from PNA tetramer to molten globule like state is found to have a Delta G value of similar to 33 kcal/mole while it is similar to 8 kcal/mole for the transition from molten globule like state to a completely denatured state. This in turn indicates that the tetramerization in PNA contributes significantly to the stability of the oligomer.
Resumo:
Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.
Resumo:
Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]
Resumo:
Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.
Resumo:
We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is similar to 1 mu m and that of Fe/Fe3C magnetic nanoparticles is similar to 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.