6 resultados para generative Verfahren
em Indian Institute of Science - Bangalore - Índia
Resumo:
Abstract is not available.
Resumo:
Background: Temporal analysis of gene expression data has been limited to identifying genes whose expression varies with time and/or correlation between genes that have similar temporal profiles. Often, the methods do not consider the underlying network constraints that connect the genes. It is becoming increasingly evident that interactions change substantially with time. Thus far, there is no systematic method to relate the temporal changes in gene expression to the dynamics of interactions between them. Information on interaction dynamics would open up possibilities for discovering new mechanisms of regulation by providing valuable insight into identifying time-sensitive interactions as well as permit studies on the effect of a genetic perturbation. Results: We present NETGEM, a tractable model rooted in Markov dynamics, for analyzing the dynamics of the interactions between proteins based on the dynamics of the expression changes of the genes that encode them. The model treats the interaction strengths as random variables which are modulated by suitable priors. This approach is necessitated by the extremely small sample size of the datasets, relative to the number of interactions. The model is amenable to a linear time algorithm for efficient inference. Using temporal gene expression data, NETGEM was successful in identifying (i) temporal interactions and determining their strength, (ii) functional categories of the actively interacting partners and (iii) dynamics of interactions in perturbed networks. Conclusions: NETGEM represents an optimal trade-off between model complexity and data requirement. It was able to deduce actively interacting genes and functional categories from temporal gene expression data. It permits inference by incorporating the information available in perturbed networks. Given that the inputs to NETGEM are only the network and the temporal variation of the nodes, this algorithm promises to have widespread applications, beyond biological systems. The source code for NETGEM is available from https://github.com/vjethava/NETGEM
Resumo:
Maximum entropy approach to classification is very well studied in applied statistics and machine learning and almost all the methods that exists in literature are discriminative in nature. In this paper, we introduce a maximum entropy classification method with feature selection for large dimensional data such as text datasets that is generative in nature. To tackle the curse of dimensionality of large data sets, we employ conditional independence assumption (Naive Bayes) and we perform feature selection simultaneously, by enforcing a `maximum discrimination' between estimated class conditional densities. For two class problems, in the proposed method, we use Jeffreys (J) divergence to discriminate the class conditional densities. To extend our method to the multi-class case, we propose a completely new approach by considering a multi-distribution divergence: we replace Jeffreys divergence by Jensen-Shannon (JS) divergence to discriminate conditional densities of multiple classes. In order to reduce computational complexity, we employ a modified Jensen-Shannon divergence (JS(GM)), based on AM-GM inequality. We show that the resulting divergence is a natural generalization of Jeffreys divergence to a multiple distributions case. As far as the theoretical justifications are concerned we show that when one intends to select the best features in a generative maximum entropy approach, maximum discrimination using J-divergence emerges naturally in binary classification. Performance and comparative study of the proposed algorithms have been demonstrated on large dimensional text and gene expression datasets that show our methods scale up very well with large dimensional datasets.
Resumo:
In der vorliegenden Arbeit wird die Methode der parametrischen Differentiation angewendet, um ein System nichtlinearer Gleichungen zu lösen, das zwei- und dreidimensionale freie, konvektive Grenzschichströmungen bzw. eine zweidimensionale magnetohydrodynamische Grenzschichtströmung beherrscht. Der Hauptvorteil dieser Methode besteht darin, daß die nichlinearen Gleichungen auf lineare reduziert werden und die Nichtlinearität auf ein System von Gleichungen erster Ordnung beschränkt wird, das, verglichen mit den ursprünglichen Nichtlinearen Gleichungen, viel leichter gelöst werden kann. Ein anderer Vorzug der Methode ist, daß sie es ermöglicht, die Lösung von einer bekannten, zu einem bestimmten Parameterwert gehörigen Lösung aus durch schrittweises Vorgehen die Lösung für den gesamten Parameterbereich zu erhalten. Die mit dieser Methode gewonnenen Ergebnisse stimmen gut mit den entsprechenden, mit anderen numerischen Verfahren erzielten überein.
Resumo:
The state space approach is extended to the two dimensional elastodynamic problems. The formulation is in a form particularly amenable to consistent reduction to obtain approximate theories of any desired order. Free vibration of rectangular beams of arbitrary depth is investigated using this approach. The method does not involve the concept of the shear coefficientk. It takes into account the vertical normal stress and the transverse shear stress. The frequency values are calculated using the Timoshenko beam theory and the present analysis for different values of Poisson's ratio and they are in good agreement. Four cases of beams with different end conditions are considered.Die Zustandsraum-Technik wird auf zweidimensionale elastodynamische Probleme ausgedehnt. Die Formulierung ist besonders geeignet für die Aufstellung von Näherungstheorien beliebigen Grades. Freie Schwingungen von Rechteckbalken beliebiger Höhe wurden mit Hilfe dieser Technik untersucht. Das Verfahren umgeht den Begriff des Schubbeiwertsk. Es berücksichtigt die senkrechte Normalbeanspruchung und die Querkraft. Die Frequenzwerte werden mit Hilfe der Balkentheorie von Timoshenko und der vorliegenden Analyse berechnet, und zwar für verschiedene Werte der Querdehnzahl. Die berechneten Werte befinden sich in guter Übereinstimmung. Vier Fälle von Balken mit verschiedenen Endbedingungen werden untersucht.
Resumo:
The Restricted Boltzmann Machines (RBM) can be used either as classifiers or as generative models. The quality of the generative RBM is measured through the average log-likelihood on test data. Due to the high computational complexity of evaluating the partition function, exact calculation of test log-likelihood is very difficult. In recent years some estimation methods are suggested for approximate computation of test log-likelihood. In this paper we present an empirical comparison of the main estimation methods, namely, the AIS algorithm for estimating the partition function, the CSL method for directly estimating the log-likelihood, and the RAISE algorithm that combines these two ideas.