245 resultados para génétique inverse
em Indian Institute of Science - Bangalore - Índia
Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification
Resumo:
The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.
Resumo:
A pseudo-dynamical approach for a class of inverse problems involving static measurements is proposed and explored. Following linearization of the minimizing functional associated with the underlying optimization problem, the new strategy results in a system of linearized ordinary differential equations (ODEs) whose steady-state solutions yield the desired reconstruction. We consider some explicit and implicit schemes for integrating the ODEs and thus establish a deterministic reconstruction strategy without an explicit use of regularization. A stochastic reconstruction strategy is then developed making use of an ensemble Kalman filter wherein these ODEs serve as the measurement model. Finally, we assess the numerical efficacy of the developed tools against a few linear and nonlinear inverse problems of engineering interest.
Resumo:
The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural to LiCoO2, is considered as a potential cathode material. A layer of carbon coated on the particles improves the electrode performance, Which is attributed to an increase of the grain connectivity and also to protection of metal oxide from chemical reaction. The present work involves in situ synthesis of carbon-coated submicrometer-sized particles of LiNi1/3Co1/3Mn1/3O2 in an inverse microemulsion medium in the presence of glucose. The precursor obtained from the reaction is heated in air at 900 degrees C for 6 h to get crystalline LiNi1/3Co1/3Mn1/3O2. The carbon coating is found to impart porosity as well as higher surface area in relation to bare samples of the compound. The electrochemical characterization studies provide that carbon-coated LiNi1/3Co1/3Mn1/3O2 samples exhibit improved rate capability and cycling performance. The carbon coatings are shown to suppress the capacity fade, which is normally observed for the bare compound. Impedance spectroscopy data provide additional evidence for the beneficial effect of a carbon coating on LiNi1/3Co1/3Mn1/3O2 particles.
Resumo:
This paper presents an inverse dynamic formulation by the Newton–Euler approach for the Stewart platform manipulator of the most general architecture and models all the dynamic and gravity effects as well as the viscous friction at the joints. It is shown that a proper elimination procedure results in a remarkably economical and fast algorithm for the solution of actuator forces, which makes the method quite suitable for on-line control purposes. In addition, the parallelism inherent in the manipulator and in the modelling makes the algorithm quite efficient in a parallel computing environment, where it can be made as fast as the corresponding formulation for the 6-dof serial manipulator. The formulation has been implemented in a program and has been used for a few trajectories planned for a test manipulator. Results of simulation presented in the paper reveal the nature of the variation of actuator forces in the Stewart platform and justify the dynamic modelling for control.
Resumo:
While performing a mission, multiple Unmanned Aerial Vehicles (UAVs) need to avoid each other to prevent collisions among them. In this paper, we design a collision avoidance algorithm to resolve the conflict among UAVs that are on a collision course while flying to heir respective destinations. The collision avoidance algorithm consist of each UAV that is on a collision course reactively executing a maneuver that will, as in `inverse' Proportional Navigation (PN), increase Line of Sight (LOS) rate between them, resulting in a `pulling out' of collision course. The algorithm is tested for high density traffic scenarios as well as for robustness in the presence of noise.
Resumo:
Among the iterative schemes for computing the Moore — Penrose inverse of a woll-conditioned matrix, only those which have an order of convergence three or two are computationally efficient. A Fortran programme for these schemes is provided.
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
In this paper an approach for obtaining depth and section modulus of the cantilever sheet pile wall using inverse reliability method is described. The proposed procedure employs inverse first order reliability method to obtain the design penetration depth and section modulus of the steel sheet pile wall in order that the reliability of the wall against failure modes must meet a desired level of safety. Sensitivity analysis is conducted to assess the effect of uncertainties in design parameters on the reliability of cantilever sheet pile walls. The analysis is performed by treating back fill soil properties, depth of the water table from the top of the sheet pile wall, yield strength of steel and section modulus of steel pile as random variables. Two limit states, viz., rotational and flexural failure of sheet pile wall are considered. The results using this approach are used to develop a set of reliability based design charts for different coefficients of variation of friction angle of the backfill (5%, 10% and 15%). System reliability considerations in terms of series and parallel systems are also studied.
Resumo:
The normal and inverse micellar property of a bile-acid-based dendritic structure was established through dye solubilization studies in both polar and nonpolar media.
Resumo:
Inverse filters are conventionally used for resolving overlapping signals of identical waveshape. However, the inverse filtering approach is shown to be useful for resolving overlapping signals, identical or otherwise, of unknown waveshapes. Digital inverse filter design based on autocorrelation formulation of linear prediction is known to perform optimum spectral flattening of the input signal for which the filter is designed. This property of the inverse filter is used to accomplish composite signal decomposition. The theory has been presented assuming constituent signals to be responses of all-pole filters. However, the approach may be used for a general situation.
Resumo:
An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.
Resumo:
Incubation of glyceraldehyde-3-phosphate dehydrogenase (GAPD) with sodium nitroprusside (SNP) decreased its activity in concentration- and time-dependent fashion in the presence of a thiol compounds, with DTT being more effective than GSH. Both forward and backward reactions were effected. Coinciding with this, HgCl2-sensitive labelling of the protein by [32P]NAD+ also increased, indicating the stimulation of ADP-ribosylation. Treatment with SNP of GAPD samples from rabbit muscle, sheep brain and yeast inactivated the dehydrogenase activity of the three, but only the mammalian proteins showed ADP-ribosylation activity. The SNP-modified protein of rabbit muscle GAPD, freed from the reagent by Sephadex filtration showed a concentration-dependent restoration of the dehydrogenase activity on preincubation with DTT and GSH. Such thiol-treated preparations also gave increased ADP-ribosylation activity with DTT, and to a lesser extent with GSH. The SNP-modified protein was unable to catalyze this activity with the native yeast enzyme and native and heat-inactivated muscle enzyme. It was possible to generate the ADP-ribosylation activity in muscle GAPD, by an NO-independent mechanism, on dialysis in Tris buffer under aerobic conditions , and on incubating with NADPH, but not NADH, in muscle and brain, but not yeast, enzymes. The results suggest that the inverse relationship of the dehydrogenase and ADP-ribosylation activities is coincidental but not correlated