49 resultados para fuel Cell.
em Indian Institute of Science - Bangalore - Índia
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The use of fractional-factorial methods in the optimization of porous-carbon electrode structure is discussed with respect to weight-loss of carbon during gas treatment, weight and mixing time of binder, compaction temperature, time and pressure, and pressure of feed gas. The experimental optimization of an air electrode in alkaline solution is described.
Resumo:
Catalytic combustion of H-2 was carried out over combustion synthesized noble metal (Pd or Pt) ion-substituted CeO2 based catalysts using a feed stream that simulated exhaust gases from a fuel cell processor The catalysts showed a high activity for H-2-combustion and complete conversion was achieved below 200 C over all the catalysts when O-2 was used in a stoichiometric amount With higher amounts of O-2 the reaction rates Increased and complete conversions were possible below 100 C The reaction was also carried out over Pd-impregnated CeO2 The conversions of H-2 with stoichiometric amount of O-2 were found to be higher over Pd-substituted compound The mechanism of the reaction over noble metal-substituted compounds was proposed on the basis of X-ray photoelectron spectroscopy studies The redox couples between Ce and metal ions were established and a dual site redox mechanism was pi posed for the reaction (C) 2010 Elsevier B V All rights reserved
Resumo:
Design and operational details for a self-supported polymer electrolyte fuel cell (PEFC) system with anodic dead-end fuel supply and internally humidified cathodic oxidant flow are described. During the PEFC operation, nitrogen and water back diffuse across the Nafion membrane from the cathode to the anode and accumulate in the anode flow channels affecting stack performance. The accumulated inert species are flushed from the stack by purging the fuel cell stack with a timer-activated purge valve to address the aforesaid problem. To minimize the system complexity, stack is designed in such a way that all the inert species accumulate in only one cell called the purge cell. A pulsed purge sequence comprises opening the valve for purge duration followed by purge-valve closing for the hold period and repeating the sequence in cycles. Since self-humidification is inadequate to keep the membrane wet, the anodic dead-end-operated PEFC stack with composite membrane comprising perflourosulphonic acid (Nafion) and silica is employed for keeping the membrane humidified even while operating the stack with dry hydrogen and internally humidified air.
Resumo:
Results on the performance of a 25 cm(2) liquid-feed solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC), operating under near-ambient conditions, are reported. The SPE-DMFC can yield a maximum power density of c. 200 mW cm(-2) at 90 C while operating with 1 M aqueous methanol and oxygen under ambient pressure. While operating the SPE-DMFC under similar conditions with air, a maximum power density of ca. 100 mW cm(-2) is achieved. Analysis of the electrode reaction kinetics parameters on the methanol electrode suggests that the reaction mechanism for methanol oxidation remains invariant with temperature. Durability data on the SPE-DMFC at an operational current density of 100 mA cm(-2) have also been obtained.
Resumo:
A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of ca. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer-electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer-electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.
Resumo:
There are deficiencies in current definition of thermodynamic efficiency of fuel cells (ηcth = ΔG/ΔH); efficiency greater than unity is obtained when AS for the cell reaction is positive, and negative efficiency is obtained for endothermic reactions. The origin of the flow is identified. A new definition of thennodynamic efficiency is proposed that overcomes these limitations. Consequences of the new definition are examined. Against the conventional view that fuel cells are not Carnot limited, several recent articles have argued that the second law of thermodynamics restricts fuel cell energy conversion in the same way as heat engines. This controversy is critically examined. A resolution is achieved in part from an understanding of the contextual assumptions in the different approaches and in part from identifying some conceptual limitations.
Resumo:
We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.
Resumo:
Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.