59 resultados para fractional-order control

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic systems involving convolution integrals with decaying kernels, of which fractionally damped systems form a special case, are non-local in time and hence infinite dimensional. Straightforward numerical solution of such systems up to time t needs O(t(2)) computations owing to the repeated evaluation of integrals over intervals that grow like t. Finite-dimensional and local approximations are thus desirable. We present here an approximation method which first rewrites the evolution equation as a coupled in finite-dimensional system with no convolution, and then uses Galerkin approximation with finite elements to obtain linear, finite-dimensional, constant coefficient approximations for the convolution. This paper is a broad generalization, based on a new insight, of our prior work with fractional order derivatives (Singh & Chatterjee 2006 Nonlinear Dyn. 45, 183-206). In particular, the decaying kernels we can address are now generalized to the Laplace transforms of known functions; of these, the power law kernel of fractional order differentiation is a special case. The approximation can be refined easily. The local nature of the approximation allows numerical solution up to time t with O(t) computations. Examples with several different kernels show excellent performance. A key feature of our approach is that the dynamic system in which the convolution integral appears is itself approximated using another system, as distinct from numerically approximating just the solution for the given initial values; this allows non-standard uses of the approximation, e. g. in stability analyses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fractional-order derivatives appear in various engineering applications including models for viscoelastic damping. Damping behavior of materials, if modeled using linear, constant coefficient differential equations, cannot include the long memory that fractional-order derivatives require. However, sufficiently great rnicrostructural disorder can lead, statistically, to macroscopic behavior well approximated by fractional order derivatives. The idea has appeared in the physics literature, but may interest an engineering audience. This idea in turn leads to an infinite-dimensional system without memory; a routine Galerkin projection on that infinite-dimensional system leads to a finite dimensional system of ordinary differential equations (ODEs) (integer order) that matches the fractional-order behavior over user-specifiable, but finite, frequency ranges. For extreme frequencies (small or large), the approximation is poor. This is unavoidable, and users interested in such extremes or in the fundamental aspects of true fractional derivatives must take note of it. However, mismatch in extreme frequencies outside the range of interest for a particular model of a real material may have little engineering impact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte-Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga-Bhadra river system in southern India, with a steady state BOD-DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direction Of Arrival (DOA) estimation, using a sensor array, in the presence of non-Gaussian noise using Fractional Lower-Order Moments (FLOM)matrices is studied. In this paper, a new FLOM based technique using the Fractional Lower Order Infinity Norm based Covariance (FLIC) Matrix is proposed. The bounded property and the low-rank subspace structure of the FLIC matrix is derived. Performance of FLIC based DOA estimation using MUSIC, ESPRIT, is shown to be better than other FLOM based methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control systems arising in many engineering fields are often of distributed parameter type, which are modeled by partial differential equations. Decades of research have lead to a great deal of literature on distributed parameter systems scattered in a wide spectrum.Extensions of popular finite-dimensional techniques to infinite-dimensional systems as well as innovative infinite-dimensional specific control design approaches have been proposed. A comprehensive account of all the developments would probably require several volumes and is perhaps a very difficult task. In this paper, however, an attempt has been made to give a brief yet reasonably representative account of many of these developments in a chronological order. To make it accessible to a wide audience, mathematical descriptions have been completely avoided with the assumption that an interested reader can always find the mathematical details in the relevant references.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel 12-sided polygonal space vector structure is proposed for an induction motor drive. The space vector pattern presented in this paper consists of two 12-sided concentric polygons with the outer polygon having a radius double the inner one. As compared to previously reported 12-sided polygonal space vector structures, this paper subdivides the space vector plane into smaller sized triangles. This helps in reducing the switching frequency of the inverters without deteriorating the output voltage quality. It also reduces the device ratings and dv/dt stress on the devices to half. At the same time, other benefits obtained from the existing 12-sided space vector structure, such as increased linear modulation range and complete elimination of 5th and 7th order harmonics in the phase voltage, are also retained in this paper. The space vector structure is realized by feeding an open-end induction motor with two conventional three-level neutral point clamped (NPC) inverters with asymmetric isolated dc link voltage sources. The neutral point voltage fluctuations in the three-level NPC inverters are eliminated by utilizing the switching state multiplicities for a space vector point. The pulsewidth modulation timings are calculated using sampled reference waveform amplitudes and are explained in detail in this paper. Experimental verification on a laboratory prototype shows that this configuration may be considered suitable for high power drives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-tuning is applied to the control of nonlinear systems represented by the Hammerstein model wherein the nonlinearity is any odd-order polynomial. But control costing is not feasible in general. Initial relay control is employed to contain the deviations.