54 resultados para focal flowers
em Indian Institute of Science - Bangalore - Índia
Resumo:
For the specific case of binary stars, this paper presents signal-to-noise ratio (SNR) calculations for the detection of the parity (the side of the brighter component) of the binary using the double correlation method. This double correlation method is a focal plane version of the well-known Knox-Thompson method used in speckle interferometry. It is shown that SNR for parity detection using double correlation depends linearly on binary separation. This new result was entirely missed by previous analytical calculations dealing with a point source. It is concluded that, for magnitudes relevant to the present day speckle interferometry and for binary separations close to the diffraction limit, speckle masking has better SNR for parity detection.
Resumo:
We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.
Resumo:
The perception of ultraviolet (UV) light by spiders has so far been only demonstrated in salticids. Crab spiders (Thomisidae) hunt mostly on flowers and need to find appropriate hunting sites. Previous studies have shown that some crab spiders that reflect UV light use UV contrast to enhance prey capture. The high UV contrast can be obtained either by modulation of body colouration or active selection of appropriate backgrounds for foraging. We show that crab spiders (Thomisus sp.)hunting on Spathiphyllum plants use chromatic contrast, especially UV contrast, to make themselves attractive to hymenopteran prey. Apart from that, they are able to achieve high UV contrast by active selection of non-UV reflecting surfaces when given a choice of UV-reflecting and non-UV reflecting surfaces in the absence of odour cues. Honeybees (Apis cerana) approached Spathiphyllum plants bearing crab spiders on which the spiders were high UV-contrast targets with greater frequency than those plants on which the UV-contrast of the spiders was low. Thus, crab spiders can perceive UV and may use it to choose appropriate backgrounds to enhance prey capture, by exploiting the attraction of prey such as honeybees to UV.
Resumo:
We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.
Resumo:
We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.
Resumo:
Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.
Resumo:
Sea-finding behavior in sea turtle hatchlings is modified by the visual cues provided by artificial beach front lighting. The consequent landward movement of hatchlings in response to coastal electric lighting reduces their survival rates. We assessed the potential impact of coastal lighting at Rushikulya, an important mass nesting site of the olive ridley sea turtle (Lepidochelys olivacea) in the Indian Ocean region. We examined the response of hatchlings to light characteristics in an experimental setup, as well as to the existing lighting regimes along the beach, using arena trials. Previous studies on other species indicate preferential orientation towards low wavelength and high intensity light. Our study confirms these preferences among hatchlings from the Indian Ocean population of olive ridleys. In addition we also found that wavelength and intensity could have an interactive effect upon hatchling orientation. Hatchlings at the study site respond both to visible point sources of light and to sheer glows of light. Though beach plantations of introduced Casuarina equisetifolia are generally considered to have negative impacts on sea turtle nesting beaches, we found that they acted as an effective light barrier when planted about 50 m away from the high tide line. We developed a model of the expected impact of artificial lighting on hatchling orientation during mass hatching events of previous years, and predict as much as 50% misorientation in some years. We also developed a map representing the misorientation of hatchlings due to artificial lighting based on arena trials in different regions of the beach. The results of the study helped identify focal areas for light management on the beach, which could be critical for the survival of this population.
Resumo:
A methodology for determining spacecraft attitude and autonomously calibrating star camera, both independent of each other, is presented in this paper. Unlike most of the attitude determination algorithms where attitude of the satellite depend on the camera calibrating parameters (like principal point offset, focal length etc.), the proposed method has the advantage of computing spacecraft attitude independently of camera calibrating parameters except lens distortion. In the proposed method both attitude estimation and star camera calibration is done together independent of each other by directly utilizing the star coordinate in image plane and corresponding star vector in inertial coordinate frame. Satellite attitude, camera principal point offset, focal length (in pixel), lens distortion coefficient are found by a simple two step method. In the first step, all parameters (except lens distortion) are estimated using a closed-form solution based on a distortion free camera model. In the second step lens distortion coefficient is estimated by linear least squares method using the solution of the first step to be used in the camera model that incorporates distortion. These steps are applied in an iterative manner to refine the estimated parameters. The whole procedure is faster enough for onboard implementation.
Resumo:
The sympatrically occurring Indian short-nosed fruit bat Cynopterus sphinx and Indian flying fox Pteropus giganteus visit Madhuca latifolia (Sapotaceae), which offers fleshy corollas (approximate to 300 mg) to pollinating bats. The flowers are white, tiny and in dense fascicles The foraging activities of the two bat species were segregated in space and time. Cynopterus sphinx fed on resources at lower heights in the trees than P giganteus and its peak foraging activity occurred at 19 30 h, before that of P giganteus Foraging activities involved short searching flights followed by landing and removal of the corolla by mouth Cynopterus sphinx detached single corollas from fascicles and carried them to nearby feeding roosts, where it sucked the juice and spat out the Fibrous remains Pteropus giganteus landed on top of the trees and fed on the corollas in situ, its peak activity occurred at 20 30 11 This species glided and crawled between the branches and held the branches with claws and forearms when removing fleshy corollas with Its Mouth Both C sphinx and P giganteus consumed fleshy corollas with attached stamens and left the gynoecium intact Bagging experiments showed that fruit-set in bat-visited flowers was significantly higher (P < 0.001) than in self-pollinated flowers.
Resumo:
We evaluated trained listener-based acoustic sampling as a reliable and non-invasive method for rapid assessment of ensiferan species diversity in tropical evergreen forests. This was done by evaluating the reliability of identification of species and numbers of calling individuals using psychoacoustic experiments in the laboratory and by comparing psychoacoustic sampling in the field with ambient noise recordings made at the same time. The reliability of correct species identification by the trained listener was 100% for 16 out of 20 species tested in the laboratory. The reliability of identifying the numbers of individuals correctly was 100% for 13 out of 20 species. The human listener performed slightly better than the instrument in detecting low frequency and broadband calls in the field, whereas the recorder detected high frequency calls with greater probability. To address the problem of pseudoreplication during spot sampling in the field, we monitored the movement of calling individuals using focal animal sampling. The average distance moved by calling individuals for 17 out of 20 species was less than 1.5 m in half an hour. We suggest that trained listener-based sampling is preferable for crickets and low frequency katydids, whereas broadband recorders are preferable for katydid species with high frequency calls for accurate estimation of ensiferan species richness and relative abundance in an area.
Resumo:
Reproduction of plants in fragmented habitats may be limited because of lower diversity or abundance of pollinators, and/or variation in local plant density. We assessed natural fruit set and pollinator limitation in ten species of woody plants in natural and restored fragments in the Pondicherry region of southern India, to see whether breeding system of plants (self-compatible and self-incompatible) affected fruit set. We tested whether the number of flowering individuals in the fragments affected the fruit set and further examined the adult and sapling densities of self-compatible (SC) and self-incompatible (SI) species. We measured the natural level of fruit set and pollinator limitation (calculated as the difference in fruit set between hand cross-pollinated and naturally pollinated flowers). Our results demonstrate that there was a higher level of pollinator limitation and hence lower levels of natural fruit set in self-incompatible species as compared to self-compatible species. However, the hand cross-pollinated flowers in SC and SI species produced similar levels of fruit set,further indicating that lower fruit set was due to pollinator limitation and not due to lack of cross-compatible individuals in the fragments. There was no significant relation between number of flowering individuals and the levels of natural fruit set, except for two species Derris ovalifolia, Ixora pavetta. In these species the natural fruit set decreased with increasing population size, again indicating pollinator limitation. The adult and sapling densities in self-compatible species were significantly higher than inself-incompatible species. These findings indicate that the low reproductive output in self-incompatible species may eventually lead to lower population sizes. Restoration of pollinator services along with plant species in fragmented habitats is important for the long-term conservation of biodiversity. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.