323 resultados para flow speed
em Indian Institute of Science - Bangalore - Índia
Resumo:
The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.
Resumo:
It is observed that Hartmann flow sustains wave propagation in its centre region for waves whose phase speed is less than the maximum flow speed. Similar to the previous observations it is found that viscous boundary layers around the critical level and at the wall replace the exponential regions and wave sinks required for over-reflection in the inviscid flow. The uniform magnetic field stabilizes the flow for small-wave-number disturbances along thez-direction. Over-reflection is confined to a few ranges of phase speeds for which the two boundary layers are close together rather than widely separated. These ranges correspond exactly to those for which unstable eigenmodes exist. Over-reflection is associated with a wave phase tilt opposite in direction to the shear.
Resumo:
When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.
Resumo:
Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of I cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K*=EI/(0.5 rho(UL3)-L-2), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter plates show significant differences.
Resumo:
The generalizations of the Onsager model for the radial boundary layer and the Carrier-Maslen model for the end-cap axial boundary layer in a high-speed rotating cylinder are formulated for studying the secondary gas flow due to wall heating and due to insertion of mass, momentum and energy into the cylinder. The generalizations have wider applicability than the original Onsager and Carrier-Maslen models, because they are not restricted to the limit A >> 1, though they are restricted to the limit R e >> 1 and a high-aspect-ratio cylinder whose length/diameter ratio is large. Here, the stratification parameter A = root m Omega(2)R(2)/2k(B)T). This parameter A is the ratio of the peripheral speed, Omega R, to the most probable molecular speed, root 2k(B)T/m, the Reynolds number Re = rho w Omega R(2)/mu, where m is the molecular mass, Omega and R are the rotational speed and radius of the cylinder, k(B) is the Boltzmann constant, T is the gas temperature, rho(w) is the gas density at wall, and mu is the gas viscosity. In the case of wall forcing, analytical solutions are obtained for the sixth-order generalized Onsager equations for the master potential, and for the fourth-order generalized Carrier-Maslen equation for the velocity potential. For the case of mass/momentum/energy insertion into the flow, the separation-of-variables procedure is used, and the appropriate homogeneous boundary conditions are specified so that the linear operators in the axial and radial directions are self-adjoint. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order and second-order in the radial and axial directions for the Onsager equation, and fourth-order and second-order in the axial and radial directions for the Carrier-Maslen equation) are determined. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used `diffuse reflection' boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a `temperature slip' (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity. The predictions of the generalized models are also significantly better than those of the original Onsager and Carrier-Maslen models, which are restricted to thin boundary layers in the limit of high stratification parameter.
Resumo:
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
Resumo:
A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.
Resumo:
Data flow computers are high-speed machines in which an instruction is executed as soon as all its operands are available. This paper describes the EXtended MANchester (EXMAN) data flow computer which incorporates three major extensions to the basic Manchester machine. As extensions we provide a multiple matching units scheme, an efficient, implementation of array data structure, and a facility to concurrently execute reentrant routines. A simulator for the EXMAN computer has been coded in the discrete event simulation language, SIMULA 67, on the DEC 1090 system. Performance analysis studies have been conducted on the simulated EXMAN computer to study the effectiveness of the proposed extensions. The performance experiments have been carried out using three sample problems: matrix multiplication, Bresenham's line drawing algorithm, and the polygon scan-conversion algorithm.
Resumo:
In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions.
Resumo:
An aeration process in ail activated sludge plant is a continuous-flow system. In this system, there is a steady input flow (flow from the primary clarifier or settling tank with some part from the secondary clarifier or secondary settling tank) and output flow connection to the secondary clarifier or settling tank. The experimental and numerical results obtained through batch systems can not be relied on and applied for the designing of a continuous aeration tank. In order to scale up laboratory results for field application, it is imperative to know the geometric parameters of a continuous system. Geometric parameters have a greater influence on the mass transfer process of surface aeration systems. The present work establishes the optimal geometric configuration of a continuous-flow surface aeration system. It is found that the maintenance of these optimal geometric parameters systems result in maximum aeration efficiency. By maintaining the obtained optimal geometric parameters, further experiments are conducted in continuous-flow surface aerators with three different sizes in order to develop design curves correlating the oxygen transfer coefficient and power number with the rotor speed. The design methodology to implement the presently developed optimal geometric parameters and correlation equations for field application is discussed.
Resumo:
Measurable electrical signal is generated when a gas flows over a variety of solids, including doped semiconductors, even at the modest speed of a few meters per second. The underlying mechanism is an interesting interplay of Bernoulli's principle and the Seebeck effect. The electrical signal depends on the square of Mach number (M) and is proportional to the Seebeck coefficient (S) of the solids. Here we present experimental estimate of the response time of the signal rise and fall process, i.e. how fast the semiconductor materials respond to a steady flow as soon as it is set on or off. A theoretical model is also presented to understand the process and the dependence of the response time on the nature and physical dimensions of the semiconductor material used and they are compared with the experimental observations. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present article about the high speed water tunnel facility at the Indian Institute of Science, Bangalore, provides a general description of the tunnel circuit, and brief reports on the performance of the facility and some typical results from investigations carried out in it. A unique aspect of the facility is that it has a horizontal resorber in the form of a large cylindrical tank located in the lower leg of the circuit. The facility has been used, among other things, for flow visualization studies, and investigations on marine propeller hydrodynamics and “synthetic cavitation”. The last topic has been primarily developed at the Indian Institute of Science and shows considerable promise for basic work in cavitation inception and noise.
Resumo:
The fluid-flow pattern and residence-time distribution (r.t.d.) of the fluid in a continuous casting mould have been studied using a water model. The two recirculating zones below the discharge ports have been found to be asymmetric. The effect of casting speed, discharge port diameter, shroud well depth and the immersion depth on r.t.d. have been investigated. The r.t.d. curve has been well represented by a model of two backmix cells of equal volume in series. The exist of the fluid has been found to be non-uniform across the cross-section of the mould. The fluid-flow pattern has been observed to change with time in a random fashion. Dead volume of upto 31.8% has been found with smaller discharge ports.