23 resultados para floral biology

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral hepatitis is caused mainly by infection with one of the five hepatitis viruses, which use the liver as their primary site of replication. Each of these, known as hepatitis A through E viruses (HAV to HEV), belong to different virus families, have unique morphology, genomic organization and replication strategy. These viruses cause similar clinical manifestations during the acute phase of infection but vary in their ability to cause chronic infection. While HAV and HEV cause only acute disease with no chronic sequelae, HBV, HCV and HDV cause varying degrees of chronicity and liver injury, which can progress to cirrhosis and liver cancers. Though specific serological tests are available for the known hepatitis viruses, nearly 20% of all hepatitis cases show no markers. Antiviral therapy is also recommended for some hepatitis viruses and a preventive vaccine is available only for hepatitis B. More research and public awareness programmes are needed to control the disease. This review will provide an overview of the hepatitis viruses and the disease they cause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene and siRNA delivery are presented along with challenges and opportunities for siRNA therapeutics. Advances in protein design methodology and screening are described, with a focus on their application to the design of antibody based therapeutics. Future advances in this area relevant to vaccine design are also mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apetalal mutation of Arabidopsis affects floral meristem identity and the development of sepal and petal primordia of the flower. We mapped the available RFLP markers on chromosome 1 that are in the general vicinity of apetalal on a fine structure map and then chose the closest RFLP as a starting point for contiguous DNA (contig) generation. We report here a contig of about 800 kilobases (kb) that spans a 3.5 cM region of chromosome 1. We used genomic libraries of Arabidopsis prepared in yeast artificial chromosome (YAC) vectors and the detailed characterization of 19 YACs is reported. RFLPs displayed by the end fragments from the walk were mapped to align and correlate the genetic and physical maps for this region of chromosome 1. In this segment of the genome, 1 cM corresponds to a little over 200 kb of physical distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the many different objectives of large scale structural genomics projects are expanding the protein fold space, enhancing understanding of a model or disease-related organism, and providing foundations for structure-based drug discovery. Systematic analysis of protein structures of Mycobacterium tuberculosis has been ongoing towards meeting some of these objectives. Indian participation in these efforts has been enthusiastic and substantial. The proteins of M. tuberculosis chosen for structural analysis by the Indian groups span almost all the functional categories. The structures determined by the Indian groups have led to significant improvement in the biochemical knowledge on these proteins and consequently have started providing useful insights into the biology of M. tuberculosis. Moreover, these structures form starting points for inhibitor design studies, early results of which are encouraging. The progress made by Indian structural biologists in determining structures of M. tuberculosis proteins is highlighted in this review. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems biology seeks to study biological systems as a whole, by adopting an integrated approach to study and understand the function of biological systems, particularly, the response of such systems to various perturbations. In this article, we focus on the Indian efforts towards systems-level studies of Mycobacterium tuberculosis and its interaction with the host. Availability of a variety of genome-scale experimental data, providing first level `omics' descriptions of the pathogen, render it feasible to study it at a systems level. Various aspects of the pathogen, from metabolic pathways to protein-protein interaction networks have been modelled and simulated, while host-pathogen interactions have been studied experimentally using siRNA-based techniques. These studies have been useful in obtaining a global perspective of the pathogen and its interactions with the host in many ways. For example, significant insights have been gained about different aspects such as proteins essential for bacterial survival, proteins that are highly influential in the network, pathways that are highly connected, host factors responsible for maintaining the TB infection and key factors involved in autophagy and pathogenesis. A rational pipeline developed for drug target identification incorporating analyses of the interactome, reactome, genome, pocketome and the transcriptome is discussed. Finally, exploring host factors as drug targets and insights about the emergence of drug resistance are also discussed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of the transcription machinery is one of the many ways to achieve control of gene expression. This has been done either at the transcription initiation stage or at the elongation stage. Different methodologies are known to inhibit transcription initiation via targeting of double-stranded (ds) DNA by: (i) synthetic oligonucleotides, (ii) ds-DNA-specific, sequenceselective minor-groove binders (distamycin A), intercalators (daunomycin) combilexins and (iii) small molecule (peptide or intercalator)-oligonucleotide conjugates. In some cases, instead of ds-DNA, higher order G-quadruplex structures are formed at the start site of transcription. In this regard G-quadruplex DNA-specific small molecules play a significant role towards inhibition of the transcription machinery. Different types of designer DNA-binding agents act as powerful sequence-specific gene modulators, by exerting their effect from transcription regulation to gene modification. But most of these chemotherapeutic agents have serious side effects. Accordingly, there is always a challenge to design such DNA-binding molecules that should not only achieve maximum specific DNA-binding affinity, and cellular and nuclear transport activity, but also would not interfere with the functions of normal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational microspectroscopic (Raman and infrared (IR)) techniques are rapidly emerging as effective tools to probe the basic processes of life. This review mainly focuses on the applications of Raman and IR microspectroscopy to biology and biomedicine, ranging from studies on cellular components in single cells to advancement in techniques for in vitro to in vivo applications. These techniques have proved to be instrumental in studying the biological specimen with minimum perturbation, i.e. without the use of dyes and contrast-inducing agents. These techniques probe the vibrational modes of the molecules and provide spectra that are specific to the molecular properties and chemical nature of the species.