8 resultados para fitness assessments

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyembryony, referring here to situations where a nucellar embryo is formed along with the zygotic embryo, has different consequences for the fitness of the maternal parent and offspring. We have developed genetic and inclusive fitness models to derive the conditions that permit the evolution of polyembryony under maternal and offspring control. We have also derived expressions for the optimal allocation (evolutionarily stable strategy, ESS) of resources between zygotic and nucellar embryos. It is seen that (i) Polyembryony can evolve more easily under maternal control than under that of either the offspring or the ‘selfish’ endosperm. Under maternal regulation, evolution of polyembryony can occur for any clutch size. Under offspring control polyembryony is more likely to evolve for high clutch sizes, and is unlikely for low clutch sizes (<3). This conflict between mother and offspring decreases with increase in clutch size and favours the evolution of polyembryony at high clutch sizes, (ii) Polyembryony can evolve for values of “x” (the power of the function relating fitness to seed resource) greater than 0.5758; the possibility of its occurrence increases with “x”, indicating that a more efficient conversion of resource into fitness favours polyembryony. (iii) Under both maternal parent and offspring control, the evolution of polyembryony becomes increasingly unlikely as the level of inbreeding increases, (iv) The proportion of resources allocated to the nucellar embryo at ESS is always higher than that which maximizes the rate of spread of the allele against a non-polyembryonic allele.Finally we argue that polyembryony is a maternal counter strategy to compensate for the loss in her fitness due to brood reduction caused by sibling rivalry. We support this assertion by two empirical evidences: (a) the extent of polyembryony is positively correlated with brood reduction inCitrus, and (b) species exhibiting polyembryony are more often those that frequently exhibit brood reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Algorithms are efficient and robust search methods that are being employed in a plethora of applications with extremely large search spaces. The directed search mechanism employed in Genetic Algorithms performs a simultaneous and balanced, exploration of new regions in the search space and exploitation of already discovered regions.This paper introduces the notion of fitness moments for analyzing the working of Genetic Algorithms (GAs). We show that the fitness moments in any generation may be predicted from those of the initial population. Since a knowledge of the fitness moments allows us to estimate the fitness distribution of strings, this approach provides for a method of characterizing the dynamics of GAs. In particular the average fitness and fitness variance of the population in any generation may be predicted. We introduce the technique of fitness-based disruption of solutions for improving the performance of GAs. Using fitness moments, we demonstrate the advantages of using fitness-based disruption. We also present experimental results comparing the performance of a standard GA and GAs (CDGA and AGA) that incorporate the principle of fitness-based disruption. The experimental evidence clearly demonstrates the power of fitness based disruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sacred groves are patches of forests preserved for their spiritual and religious significance. The practice gained relevance with the spread of agriculture that caused large-scale deforestation affecting biodiversity and watersheds. Sacred groves may lose their prominence nowadays, but are still relevant in Indian rural landscapes inhabited by traditional communities. The recent rise of interest in this tradition encouraged scientific study that despite its pan-Indian distribution, focused on India's northeast, Western Ghats and east coast either for their global/regional importance or unique ecosystems. Most studies focused on flora, mainly angiosperms, and the faunal studies concentrated on vertebrates while lower life forms were grossly neglected. Studies on ecosystem functioning are few although observations are available. Most studies attributed watershed protection values to sacred groves but hardly highlighted hydrological process or water yield in comparison with other land use types. The grove studies require diversification from a stereotyped path and must move towards creating credible scientific foundations for conservation. Documentation should continue in unexplored areas but more work is needed on basic ecological functions and ecosystem dynamics to strengthen planning for scientifically sound sacred grove management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bacteria, alternate mechanisms are known to synthesize N-10-formyltetrahydrofolate (N10-formyl-THF) and formyl glycinamide ribotide (fGAR), which are important in purine biosynthesis. In one of the mechanisms, a direct transfer of one carbon unit from formate allows Fhs to convert tetrahydrofolate to N-10-formyl-THF, and PurT to convert glycinamide ribotide (GAR) to fGAR. Our bioinformatics analysis of fhs and purT genes (encoding Fhs and PurT) showed that in a majority of bacteria (similar to 94%), their presence was mutually exclusive. A large number of organisms possessing fhs lacked purT and vice versa. The phenomenon is so penetrating that even within a genus (Bacillus) if a species possessed fhs it lacked purT and vice versa. To investigate physiological importance of this phenomenon, we used Escherichia coli, which naturally lacks fhs (and possesses purT) as model. We generated strains, which possessed fhs and purT genes in singles or together. Deletion of purT from E. coli in the presence or absence of fhs did not confer a detectable growth disadvantage in pure cultures. However, growth competition assays revealed that the strains possessing either of the single genes outcompeted those possessing both the genes suggesting that mutual exclusion of purT and fhs in organisms confers fitness advantage in mixed cultures.