285 resultados para fire detection
em Indian Institute of Science - Bangalore - Índia
Resumo:
A double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed to detect Echis carinatus venom in various organs (brain, heart, lungs, liver, spleen and kidneys) as well as tissue at the site of injection of mice, at various time intervals (1, 6, 12, 18, 24 h and 12 h intervals up to 72 h) after death. The assay could detect E. carinatus venom levels up to 2.5 ng/ml of tissue homogenate and the venom was detected up to 72 h after death. A highly sensitive and species-specific avidin-biotin microtitre ELISA was also developed to detect venoms of four medically important Indian snakes (Bungarus caeruleus, Naja naja, E. carinatus and Daboia russelli russelli) in autopsy specimens of human victims of snake bite. The assay could detect venom levels as low as 100 pg/ml of tissue homogenate. Venoms were detected in brain, heart, lungs, liver, spleen, kidneys, tissue at the bite area and postmortem blood. In all 12 human victim cadavers tested the culprit species were identified. As observed in mice, tissue at the site of bite area showed the highest concentration of venom and the brain showed the least. Moderate amounts of venoms were found in liver, spleen, kidneys, heart and lungs. Development of a simple, rapid and species-specific diagnostic kit based on this ELISA technique useful to clinicians is discussed.
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
Dimeric and monomeric forms of the enzyme triosephosphate isomerase (TIM) from Plasmodium falciparum (Pf) have been detected under conditions of nanoflow by electrospray mass spectrometry. The dimer (M = 55 663 Da) exhibits a narrow charge state distribution with intense peaks limited to values of 18(+) to 21(+), maximal intensity being observed for charge states 19(+) and 20(+). A monomeric species with a charge state distribution ranging from 11(+) to 16(+) is also observed, which may be assigned to folded dissociated subunits. Complete dimer dissociation results under normal electrospray condition. The effects of solution pH and source temperature have been investigated. The observation of four distinct charge state distributions which may be assigned to a dimer, folded monomer, partially folded monomer and unfolded monomer is reported. Circular dichromism and fluorescence studies of Pf TIM at low pH support the retention of substantial secondary and tertiary structures. Satellite peaks in mass spectra corresponding to hydrated species are also observed and isotope shift upon deuteration is demonstrated. The analysis of all available independent crystal structures of Pf TIM and TIMs from other organisms permits identification of structurally conserved water molecules. Hydration observed in the dimer and folded monomeric forms in the gas phase may correspond to these conserved sites.
Resumo:
PbS quantum dots capped with mercaptoethanol (C2H5OSH) have been synthesized in poly vinyl alcohol and used to investigate their photoluminescence (PL) response to various ions such as zinc (Zn), cadmium (Cd), mercury (Hg), silver (Ag), copper (Cu), iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr) and nickel (Ni). The enhancement in the PL intensity was observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations was quite high, compared to that of Zn and Cd. It was observed that the change in Pb and S molar ratio has profound effect on the sensitivity of these ions. These results indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu quenched the photoluminescence. In Cd based QDs related ion probing, Hg and Cu was found to have quenching properties, however, our PbS QDs have quenching property only for Cu ions. This was attributed to the formation HgS at the surface that has bandgap higher than PbS. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa). which is an interesting feature for metal ion detectivity.
Resumo:
Dendrocalamus strictus and Bambusa arundinacea are monocarpic, gregariously flowering species of bamboo, common in the deciduous forests of the State of Karnataka in India. Their populations have significantly declined, especially since the last flowering. This decline parelleis increasing incidence of grazing, fire and extraction in recent decades. Results of an experiment in which the intensities of grazing and fire were varied, indicate that while grazing significantly depresses the survival of seedlings and the recruitment of new eulms of bamboo clumps, fire appeared to enhance seedling survival, presumably by reducing competition of lass fire-resistant species. New shoots of bamboo are destroyed by insects and a variety of herbivorous mammals. In areas of intense herbivore pressure, a bamboo clump initiates the production of a much larger number of new culrm, but results in many fewer and shorter intact culms. Extraction renders the new shoots more susceptible to herbivore pressure by removal of the protective covering of branches at the base of a bamboo clump. Hence, regular and extensive extraction by the paper mills in conjuction with intense grazing pressure strongly depresses the addition of new culms to bamboo clumps. Regulation of grazing in the forest by domestic livestock along with maintenance of the cover at the base of the clumps by extracting the culms at a higher level should reduce the rate of decline of the bamboo stocks.
Resumo:
The leader protease (L-pro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968-2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups - Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (<5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or onvergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the L-pro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the L-pro (P<0.05; 0.046*) and at aa 171 in the capsid protein VP1 (P<0.01; 0.003**).
Resumo:
The test based on comparison of the characteristic coefficients of the adjancency matrices of the corresponding graphs for detection of isomorphism in kinematic chains has been shown to fail in the case of two pairs of ten-link, simple-jointed chains, one pair corresponding to single-freedom chains and the other pair corresponding to three-freedom chains. An assessment of the merits and demerits of available methods for detection of isomorphism in graphs and kinematic chains is presented, keeping in view the suitability of the methods for use in computerized structural synthesis of kinematic chains. A new test based on the characteristic coefficients of the “degree” matrix of the corresponding graph is proposed for detection of isomorphism in kinematic chains. The new test is found to be successful in the case of a number of examples of graphs where the test based on characteristic coefficients of adjancency matrix fails. It has also been found to be successful in distinguishing the structures of all known simple-jointed kinematic chains in the categories of (a) single-freedom chains with up to 10 links, (b) two-freedom chains with up to 9 links and (c) three-freedom chains with up to 10 links.
Resumo:
A fuzzy logic system (FLS) with a new sliding window defuzzifier is proposed for structural damage detection using modal curvatures. Changes in the modal curvatures due to damage are fuzzified using Gaussian fuzzy sets and mapped to damage location and size using the FLS. The first four modal vectors obtained from finite element simulations of a cantilever beam are used for identifying the location and size of damage. Parametric studies show that modal curvatures can be used to accurately locate the damage; however, quantifying the size of damage is difficult. Tests with noisy simulated data show that the method detects damage very accurately at different noise levels and when some modal data are missing.
Resumo:
The paper presents a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. The contribution consists of three parts. In Part 1 the scope of various papers in this field is reviewed. In Part 2, a new approach for integrating the detection and tracking functions is presented. It shows how a priori information from the TWS computer can be used to improve detection. A new multitarget tracking algorithm has also been developed. It is specifically oriented towards solving the combinatorial problems in multitarget tracking. In Part 3, analytical derivations are presented for quantitatively assessing, a priori, the performance of a track-while-scan radar system (true track initiation, false track initiation, true track continuation and false track deletion characteristics). Simulation results are also shown.
Resumo:
The paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan radar. Part 1 presents a review of the current status of the subject. Part 2 details the new approach. It shows how a priori information provided by the tracker can be used to improve detection. It also presents a new multitarget tracking algorithm. In the present Part, analytical derivations are presented for assessing, a priori, the performance of the TWS radar system. True track initiation, false track initiation, true track continuation and false track deletion characteristics have been studied. It indicates how the various thresholds can be chosen by the designer to optimise performance. Simulation results are also presented.
Resumo:
he paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. Part 1 presents a review of current status. In this part, Part 2, it is shown how the detection can be improved by utilising information from tracker. A new multitarget tracking algorithm, capable of tracking manoeuvring targets in clutter, is then presented. The algorithm is specifically tailored so that the solution to the combinatorial problem presented in a companion paper can be applied. The implementation aspects are discussed and a multiprocessor architecture identified to realise the full potential of the algorithm. Part 3 presents analytical derivations for quantitative assessment of the performance of the TWS radar system. It also shows how the performance can be optimised.
Resumo:
The mechanism of fire retardant action of mono- and diammonium phosphates on polystyrene has been investigated. Ignition delay and mass burning rate studies reveal that the phosphates bring down both parameters considerably though to different extents. This has been adequately explained on the basis of the existing combustion models and physicochemical behavior of the material. Similar to their action on cellulosic materials, phosphates bring about fire retardancy in polystyrene via char formation. This is suggested to occur through a series of processes consisting of initial peroxide formation, decomposition to alcohols and aldehydes, formation of alkyl-phosphate esters, dehydration and subsequent char formation. Infrared and mass spectral studies support this mechanism.
Resumo:
Various intrusion detection systems (IDSs) reported in the literature have shown distinct preferences for detecting a certain class of attack with improved accuracy, while performing moderately on the other classes. In view of the enormous computing power available in the present-day processors, deploying multiple IDSs in the same network to obtain best-of-breed solutions has been attempted earlier. The paper presented here addresses the problem of optimizing the performance of IDSs using sensor fusion with multiple sensors. The trade-off between the detection rate and false alarms with multiple sensors is highlighted. It is illustrated that the performance of the detector is better when the fusion threshold is determined according to the Chebyshev inequality. In the proposed data-dependent decision ( DD) fusion method, the performance optimization of ndividual IDSs is first addressed. A neural network supervised learner has been designed to determine the weights of individual IDSs depending on their reliability in detecting a certain attack. The final stage of this DD fusion architecture is a sensor fusion unit which does the weighted aggregation in order to make an appropriate decision. This paper theoretically models the fusion of IDSs for the purpose of demonstrating the improvement in performance, supplemented with the empirical evaluation.
Resumo:
A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.