30 resultados para few-cycle laser pulses

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [ Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003) ], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10−4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA mu jewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low cost 12 T pulsed magnet system has been integrated with a closed-cycle helium refrigerator. The copper solenoid is directly immersed in liquid nitrogen for reduced electrical resistance and more efficient heat transfer. This ensures a minimal delay of few minutes between pulses. The sample is mounted on the cold finger of the refrigerator and, along with the surrounding vacuum shroud, is inserted into the bore of the solenoid. When combined with software lock-in signal processing to reduce noise, quick but accurate measurements can be performed at temperatures 4 K-300 K up to 12 T. Quantum Hall effect data in a p-channel SiGe/Si heterostructure has been used to calibrate the instrument against a commercial superconducting magnet. Its versatility as a routine characterization tool is demonstrated bymeasuring parallel conduction in Si/SiGe modulation doped heterostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tellurite-based glasses in the TeO2-K3Li2Nb5O15, TeO2-Ba5Li2Ti2Nb8O30, and V2Te2O9 were fabricated by the conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via the X-ray powder diffraction technique and differential thermal analysis, respectively. The as-quenched samples were irradiated by an excimer laser (248 nm). The effect of laser power, duration of irradiation, and the frequency of the laser pulses on the surface features of the above glasses were studied. The optical microscopic studies carried out on the above systems revealed the presence of quasi-periodic and periodic structures on their surfaces. The local compositional variations of these structures were confirmed by back-scattered electron imaging using scanning electron microscope accompanied by energy-dispersive X-ray analysis. These results were convincing enough to state that the glasses in the present investigations had undergone spinodal decomposition on laser irradiation. The incidence of the interconnected texture of two different phases was observed owing to the quenching effect produced by the heating and cooling cycle of the successive laser pulses. Ring- and line-shaped patterns were also observed, respectively, when the pulse frequency of the laser and the duration of irradiation were increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of applications exist for reverse saturable absorbers (RSAs) in the area of optical pulse processing and computing. An RSA can be used as power limiter/pulse smoother and energy limiter/pulse shortner of laser pulses. A combination of RSA and saturable absorber (SA) can be used for mode locking and pulse shaping between high power laser amplifiers in oscillator amplifier chain. Also, an RSA can be used for the construction of a molecular spatial light modulator (SLM) which acts as an input/output device in optical computers. A detailed review of the theoretical studies of these processes is presented. Current efforts to find RSAs at desired wavelength for testing these theoretical predictions are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAN) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (A(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 mu J was used and burst release was observed when pulse energy increased to 600 mu J.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While absorption and emission spectroscopy have always been used to detect and characterize molecules and molecular complexes, the availability of ultrashort laser pulses and associated computer-aided optical detection techniques allowed study of chemical processes directly in the time domain at unprecedented time scales, through appearance and disappearance of fluorescence from participating chemical species. Application of such techniques to chemical dynamics in liquids, where many processes occur with picosecond and femtosecond time scales lead to the discovery of a host of new phenomena that in turn led to the development of many new theories. Experiment and theory together provided new and valuable insight into many fundamental chemical processes, like isomerization dynamics, electron and proton transfer reactions, vibrational energy and phase relaxation, photosynthesis, to name just a few. In this article, we shall review a few of such discoveries in attempt to provide a glimpse of the fascinating research employing fluorescence spectroscopy that changed the field of chemical dynamics forever.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a new form of nonlinear Raman spectroscopy called `ultrafast Raman loss spectroscopy (URLS)'. URLS is analogous to stimulated Raman spectroscopy (SRS) but is much more sensitive than SRS. The signals are background (noise) free unlike in coherent anti-Stokes Raman spectroscopy (CARS) and it provides natural fluorescence rejection, which is a major problem in Raman spectroscopy. In addition, being a self-phase matching process, the URLS experiment is much easier than CARS, which requires specific phase matching of the laser pulses. URLS is expected to be alternative if not competitive to CARS microscopy, which has become a popular technique in applications to materials, biology and medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.