2 resultados para failure factors
em Indian Institute of Science - Bangalore - Índia
Resumo:
The effect of horizontal earthquake body forces on the bearing capacity of foundations has been examined computationally in a rigorous manner by employing the method of stress characteristics. The bearing capacity factors N-c, N-q and N-y, due to the components of soil cohesion, ground surcharge pressure and soil unit weight respectively, have been plotted as a function of earthquake acceleration coefficient (a(h)) for different values of soil friction angle (phi). The inclusion of earthquake body forces causes a considerable reduction in the bearing capacity factors. The bearing capacity factors N-c and N-q are seen to be approximately of the same magnitude as those reported in the literature on the basis of different solution methods. However, the obtained values of N-y are found to be significantly smaller than the available results. The nature of the pressure distribution along the footing base and the geometry of the observed failure patterns vary with the consideration of earthquake body forces.
Resumo:
Bearing capacity factors, N-c, N-q, and N-gamma, for a conical footing are determined by using the lower and upper bound axisymmetric formulation of the limit analysis in combination with finite elements and optimization. These factors are obtained in a bound form for a wide range of the values of cone apex angle (beta) and phi with delta = 0, 0.5 phi, and phi. The bearing capacity factors for a perfectly rough (delta = phi) conical footing generally increase with a decrease in beta. On the contrary, for delta = 0 degrees, the factors N-c and N-q reduce gradually with a decrease in beta. For delta = 0 degrees, the factor N-gamma for phi >= 35 degrees becomes a minimum for beta approximate to 90 degrees. For delta = 0 degrees, N-gamma for phi <= 30 degrees, as in the case of delta = phi, generally reduces with an increase in beta. The failure and nodal velocity patterns are also examined. The results compare well with different numerical solutions and centrifuge tests' data available from the literature.