32 resultados para evolutionary arms race
em Indian Institute of Science - Bangalore - Índia
Resumo:
A mathematical model of social interaction in the form of two coupler! first-order non-linear differential equations, forms the topic of this study. This non-conservative model io representative of such varied social interaction problems as coexisting sub-populations of two different species, arms race between two rival countries and the like. Differential transformation techniques developed elsewhere in the literature are seen to be effective tools of dynamic analysis of this non-linear non-conservative mode! of social interaction process.
Resumo:
Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''
Resumo:
We consider a two timescale model of learning by economic agents wherein active or 'ontogenetic' learning by individuals takes place on a fast scale and passive or 'phylogenetic' learning by society as a whole on a slow scale, each affecting the evolution of the other. The former is modelled by the Monte Carlo dynamics of physics, while the latter is modelled by the replicator dynamics of evolutionary biology. Various qualitative aspects of the dynamics are studied in some simple cases, both analytically and numerically, and its role as a useful modelling device is emphasized.
Resumo:
n this paper, a multistage evolutionary scheme is proposed for clustering in a large data base, like speech data. This is achieved by clustering a small subset of the entire sample set in each stage and treating the cluster centroids so obtained as samples, together with another subset of samples not considered previously, as input data to the next stage. This is continued till the whole sample set is exhausted. The clustering is accomplished by constructing a fuzzy similarity matrix and using the fuzzy techniques proposed here. The technique is illustrated by an efficient scheme for voiced-unvoiced-silence classification of speech.
Resumo:
Acyl carrier protein is an integral component of many cellular metabolic processes. A number of studies have reported self-acylation behavior in acyl carrier proteins. Although AM exhibit high levels of similarity in their primary and tertiary structures, self-acylation behavior is restricted to only some ACPs that can be classified into two major families based on their function. The first family of ACPs is involved in polyketide biosynthesis, whereas the second family participates in fatty acid synthesis. Facilitated by the growing number of genome sequences available for analyses, large-scale phylogenetic studies were used in these studies to uncover as to how self-acylation behavior of acyl carrier proteins is linked with the evolution of metabolic pathways in organisms. These studies show that self-acylation behavior in acyl carrier proteins was lost during the course of evolution, with certain organisms and organelles viz. plastids, retaining it for specified functions. (C) 2009 IUBMB IUBMB Life, 61(8): 853-859, 2009
Resumo:
The pattern of expression of the genes involved in the utilization of aryl beta-glucosides such as arbutin and salicin is different in the genus Shigella compared to Escherichia coli. The results presented here indicate that the homologue of the cryptic bgl operon of E. coli is conserved in Shigella sonnei and is the primary system involved in beta-glucoside utilization in the organism. The organization of the bgl genes in 5. sonnei is similar to that of E. coli; however there are three major differences in terms of their pattern of expression. (i) The bglB gene, encoding phospho-beta-glucosidase B, is insertionally inactivated in 5. sonnei. As a result, mutational activation of the silent bgl promoter confers an Arbutin-positive (Arb(+)) phenotype to the cells in a single step; however, acquiring a Salicin-positive (Sal(+)) phenotype requires the reversion or suppression of the bglB mutation in addition. (ii) Unlike in E. coli, a majority of the activating mutations (conferring the Arb(+) phenotype) map within the unlinked hns locus, whereas activation of the E. coli bgl operon under the same conditions is predominantly due to insertions within the bglR locus. (iii) Although the bgl promoter is silent in the wild-type strain of 5. sonnei (as in the case of E. coli), transcriptional and functional analyses indicated a higher basal level of transcription of the downstream genes. This was correlated with a 1 bp deletion within the putative Rho-independent terminator present in the leader sequence preceding the homologue of the bglG gene. The possible evolutionary implications of these differences for the maintenance of the genes in the cryptic state are discussed.
Resumo:
The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.
Resumo:
This paper presents a dan-based evolutionary approach for solving control problems. Three selected control problems, viz. linear-quadratic, harvest, and push-cart problems, are solved using the proposed approach. Results are compared with those of the evolutionary programming (EP) approach. In most of the cases, the proposed approach is successful in obtaining (near) optimal solutions for these selected problems.
Resumo:
Owing to the increased customer demands for make-to-order products and smaller product life-cycles, today assembly lines are designed to ensure a quick switch-over from one product model to another for companies' survival in market place. The complexity associated with the decisions pertaining to the type of training and number of workers and their exposition to the different tasks especially in the current era of customized production is a serious problem that the managers and the HRD gurus are facing in industry. This paper aims to determine the amount of cross-training and dynamic deployment policy caused by workforce flexibility for a make-to-order assembly. The aforementioned issues have been dealt with by adopting the concept of evolutionary fuzzy system because of the linguistic nature of the attributes associated with product variety and task complexity. A fuzzy system-based methodology is proposed to determine the amount of cross-training and dynamic deployment policy. The proposed methodology is tested on 10 sample products of varying complexities and the results obtained are in line with the conclusions drawn by previous researchers.
Resumo:
In this paper we analyze a novel Micro Opto Electro Mechanical Systems (MOEMS) race track resonator based vibration sensor. In this vibration sensor the straight portion of a race track resonator is located at the foot of the cantilever beam with proof mass. As the beam deflects due to vibration, stress induced refractive change in the waveguide located over the beam lead to the wavelength shift providing the measure of vibration. A wavelength shift of 3.19 pm/g in the range of 280 g for a cantilever beam of 1750μm×450m×20μmhas been obtained. The maximum acceleration (breakdown) for these dimensions is 2900g when a safety factor of 2 is taken into account. Since the wavelength of operation is around 1.55μm hybrid integration of source and detector is possible on the same substrate. Also it is less amenable to noise as wavelength shift provides the sensor signal. This type of sensors can be used for aerospace application and other harsh environments with suitable design.
Resumo:
Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.
Resumo:
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of C alpha atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.
Resumo:
Background: India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings: Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate 1971, (95% CI: 1965-1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance: The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.