2 resultados para evidence-based policy making
em Indian Institute of Science - Bangalore - Índia
Resumo:
Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project.
Resumo:
This paper addresses a search problem with multiple limited capability search agents in a partially connected dynamical networked environment under different information structures. A self assessment-based decision-making scheme for multiple agents is proposed that uses a modified negotiation scheme with low communication overheads. The scheme has attractive features of fast decision-making and scalability to large number of agents without increasing the complexity of the algorithm. Two models of the self assessment schemes are developed to study the effect of increase in information exchange during decision-making. Some analytical results on the maximum number of self assessment cycles, effect of increasing communication range, completeness of the algorithm, lower bound and upper bound on the search time are also obtained. The performance of the various self assessment schemes in terms of total uncertainty reduction in the search region, using different information structures is studied. It is shown that the communication requirement for self assessment scheme is almost half of the negotiation schemes and its performance is close to the optimal solution. Comparisons with different sequential search schemes are also carried out. Note to Practitioners-In the futuristic military and civilian applications such as search and rescue, surveillance, patrol, oil spill, etc., a swarm of UAVs can be deployed to carry out the mission for information collection. These UAVs have limited sensor and communication ranges. In order to enhance the performance of the mission and to complete the mission quickly, cooperation between UAVs is important. Designing cooperative search strategies for multiple UAVs with these constraints is a difficult task. Apart from this, another requirement in the hostile territory is to minimize communication while making decisions. This adds further complexity to the decision-making algorithms. In this paper, a self-assessment-based decision-making scheme, for multiple UAVs performing a search mission, is proposed. The agents make their decisions based on the information acquired through their sensors and by cooperation with neighbors. The complexity of the decision-making scheme is very low. It can arrive at decisions fast with low communication overheads, while accommodating various information structures used for increasing the fidelity of the uncertainty maps. Theoretical results proving completeness of the algorithm and the lower and upper bounds on the search time are also provided.