3 resultados para eusociality
em Indian Institute of Science - Bangalore - Índia
Resumo:
The evolution of altruism is the central problem of the evolution of eusociality. The evolution of altruism is most likely to be understood by studying species that show altruism in spite of being capable of ''selfish'' individual reproduction. But the definition of eusociality groups together primitively eusocial species where workers retain the ability to reproduce on their own and highly eusocial species where workers have lost reproductive options. At the same time it separates the primitively eusocial species from semisocial species, species that lack life-time sterility and cooperatively breeding birds and mammals, in most of which, altruism and the associated social life are facultative. The definition of eusociality is also such that it is sometimes difficult to decide,what is eusocial and what is not. I therefore suggest that, (1) we expand the scope of eusociality to include semisocial species, primitively eusocial species, highly eusocial species as well as those cooperatively breeding birds and mammals where individuals give up substantial or all personal reproduction for aiding conspecifics, (2) there should be no requirement of overlap of generations or of life-time sterility and (3) the distinction between primitively and highly eusocial should continue, based on the presence or absence of morphological caste differentiation.
Resumo:
Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour's glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour's gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.
Resumo:
Social insects such as ants, bees, wasps and termites exhibit extreme forms of altruism where some individuals remain sterile and assist other individuals in reproduction. Hamilton's inclusive fitness theory provides a powerful framework for investigating the evolution of such altruism. Using the paper wasp Ropalidia marginata, we have quantified and delineated the role of ecological, physiological, genetic and demographic factors in social evolution. An interesting feature of the models we have developed is their symmetry so that either altruism or selfishness can evolve, depending on the numerical values of various parameters. This suggests that selfish/solitary behaviour must occasionally re-emerge even from the eusocial state, It is useful to contemplate expected intermediate states during such potential reversals. We can perhaps envisage three successive steps in such a hypothetical process: i) workers revolt against the hegemony of the queen and challenge her status as the sole reproductive, ii) workers stop producing queens and one or more of them function as egg layers (functional queen/s) capable of producing both haploid as well as diploid offspring and iii) social evolution reverses completely so that a eusocial species becomes solitary, at least facultatively. It appears that the third step, namely transition from eusociality to the solitary state, is rare and has been restricted to transitions from the primitively eusocial state only. The absence of transitions from the highly eusocial state to the solitary state may be attributed to a number of 'preventing mechanisms' such as (a) queen control of workers (b) loss of spermathecae and ability to mate (c) morphological specialization (d) caste polyethism and (e) homeostasis, which must each make the transition difficult and, taken together, perhaps very difficult. However, the discovery of a transition from the highly eusocial to the solitary state can hardly he ruled out, given that little or no effort has gone into its detection. In this paper I discuss social evolution and its possible reversal and cite potential examples of stages in the transition from the social to the solitary.