35 resultados para eumeninine mastoparan AF
em Indian Institute of Science - Bangalore - Índia
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.
Resumo:
Given the significant gains that relay-based cooperation promises, the practical problems of acquisition of channel state information (CSI) and the characterization and optimization of performance with imperfect CSI are receiving increasing attention. We develop novel and accurate expressions for the symbol error probability (SEP) for fixed-gain amplify-and-forward relaying when the destination acquires CSI using the time-efficient cascaded channel estimation (CCE) protocol. The CCE protocol saves time by making the destination directly estimate the product of the source-relay and relay-destination channel gains. For a single relay system, we first develop a novel SEP expression and a tight SEP upper bound. We then similarly analyze an opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible, which results in new results that are accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Using insights gleaned from an asymptotic analysis, we also present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s).
Resumo:
Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio (CR) network. However, unlike conventional relaying, the state of the links between the relay and the primary receiver affects the choice of the relay. Further, while the optimal amplify-and-forward (AF) relay selection rule for underlay CR is well understood for the peak interference-constraint, this is not so for the less conservative average interference constraint. For the latter, we present three novel AF relay selection (RS) rules, namely, symbol error probability (SEP)-optimal, inverse-of-affine (IOA), and linear rules. We analyze the SEPs of the IOA and linear rules and also develop a novel, accurate approximation technique for analyzing the performance of AF relays. Extensive numerical results show that all the three rules outperform several RS rules proposed in the literature and generalize the conventional AF RS rule.
Resumo:
For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.
Resumo:
A model of mobile 0-holes hybrized with Cu-spins on a square lattice is examined. A variational groundstate wavefunction which interpolates smoothly between n.n. RVB and Néel limits gives a Néellike minimum. A hole in an AF lattice polarizes it locally and becomes quite mobile. Two n.n. holes attract. Finally we speculate how holes can stabilize a spin liquid state.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
We consider the transmission of correlated Gaussian sources over orthogonal Gaussian channels. It is shown that the Amplify and Forward (AF) scheme which simplifies the design of encoders and the decoder, performs close to the optimal scheme even at high SNR. Also, it outperforms a recently proposed scalar quantizer scheme both in performance and complexity. We also study AF when there is side information at the encoders and decoder.
Resumo:
We consider single-source, single-sink (ss-ss) multi-hop relay networks, with slow-fading Rayleigh links. This two part paper aims at giving explicit protocols and codes to achieve the optimal diversity-multiplexing tradeoff (DMT) of two classes of multi-hop networks: K-parallel-path (KPP) networks and Layered networks. While single-antenna KPP networks were the focus of the first part, we consider layered and multi-antenna networks in this second part. We prove that a linear DMT between the maximum diversity d(max). and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks under the half-duplex constraint. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4. For the multiple-antenna case, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks. Along the way, we compute the DMT of parallel MIMO channels in terms of the DMT of the component channel. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable using an amplify-and-forward (AF) protocol. Explicit short-block-length codes are provided for all the proposed protocols. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two as previously believed and that simple AN protocols are often sufficient to attain the best possible DMT.
Resumo:
We consider single-source, single-sink multi-hop relay networks, with slow-fading Rayleigh fading links and single-antenna relay nodes operating under the half-duplex constraint. While two hop relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this two-part paper, we identify two families of networks that are multi-hop generalizations of the two hop network: K-Parallel-Path (KPP) networks and Layered networks. In the first part, we initially consider KPP networks, which can be viewed as the union of K node-disjoint parallel paths, each of length > 1. The results are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the optimal DMT of KPP(D) networks with K >= 4, and KPP(I) networks with K >= 3. Along the way, we derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. As a special case, the DMT of two-hop relay network without direct link is obtained. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two, as previously believed and that, simple AF protocols are often sufficient to attain the best possible DMT.
Resumo:
Let X(t) be a right continuous temporally homogeneous Markov pro- cess, Tt the corresponding semigroup and A the weak infinitesimal genera- tor. Let g(t) be absolutely continuous and r a stopping time satisfying E.( S f I g(t) I dt) < oo and E.( f " I g'(t) I dt) < oo Then for f e 9iJ(A) with f(X(t)) right continuous the identity Exg(r)f(X(z)) - g(O)f(x) = E( 5 " g'(s)f(X(s)) ds) + E.( 5 " g(s)Af(X(s)) ds) is a simple generalization of Dynkin's identity (g(t) 1). With further restrictions on f and r the following identity is obtained as a corollary: Ex(f(X(z))) = f(x) + k! Ex~rkAkf(X(z))) + n-1E + (n ) )!.E,(so un-1Anf(X(u)) du). These identities are applied to processes with stationary independent increments to obtain a number of new and known results relating the moments of stopping times to the moments of the stopped processes.
Resumo:
Bonding between ammonium perchlorate (AP) and hydroxy-terminated polybutadiene (HTPB), constituting a nonreinforcing filler system, has been studied in the presence of a unique bonding agent (BA)–a switter ion molecule, 2,4-dinitrophenylhydrazone derivative of 1,1′-bisacetylferrocene (DNPHD AF). Extensive conjugation and a permanent ionic character makes the DNPHD AF to bond strongly with the ionic oxidizer AP. Through its terminal OH group, HTPH bonds with the NO2 groups of DNPHD AF. Bonding sites in the molecules have been located from IR studies and from the first-order rate constant measurements of the bonding of DNPHD AF and other model BAs with HTPB and AP. The bonding ability of DNPHD AF is further evidenced from SEM micrographs.
Resumo:
Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.
Resumo:
In this paper, we investigate cooperative OFDM communications using amplify-and-forward (AF) protocol at the relays, in the presence of imperfect timing synchronization. In most studies on cooperative communications, perfect time synchronization among cooperating nodes is assumed. In practice, however, due to imperfect time synchronization, orthogonality among the subcarriers of the different nodes' signals at the destination receiver can be lost, causing inter-symbol interference (ISI). In this paper, we derive analytical expressions for the average SINR at the DFT output at the destination as a function of timing offset in cooperative OFDM with AF protocol, and illustrate the SINR degradation as a function of the timing offset. We also present an interference canceling (IC) receiver to mitigate the effects of ISI when there is timing offset. We show that the proposed IC receiver achieves improved BER performance even when timing offsets are large.
Resumo:
Donor-doped n-BaTiO3 polycrystalline ceramics show a strong negative temperature coefficient of resistivity below the orthorhombic-rhombohedral phase transition point, from 10(2-3) Omega cm af 190 K to 10(10-13) Omega cm at less than or similar to 50 K, with thermal coefficient of resistance alpha = 20-23% K-1. Stable thermal sensors for low-temperature applications are realized therefrom. The negative temperature coefficient of resistivity region can be modified by substituting isovalent ions in the lattice. Highly nonlinear current-voltage (I-V) curves are observed at low temperatures, with a voltage maximum followed by the negative differential resistance. The I-V curves are sensitive to dissipation so that cryogenic sensors can be fabricated for liquid level control, flow rate monitoring, radiation detection or in-rush voltage limitation.