126 resultados para ethyl acetate fraction
em Indian Institute of Science - Bangalore - Índia
Resumo:
Objectives Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. Methods Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. Key findings JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. Conclusions Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.
Resumo:
The Raman spectrum of ethyl chloroacetate has been studied at 13° C., 28° C. and 78° C. The carbonyl frequency was found to be split up into two due to the presence of rotational isomers. The higher frequency line due to thecis isomer was found to decrease in intensity with temperature. It appears that the gauche isomer will predominate in the vapour state. Altogether thirty-eight Raman lines have been recorded. Reasonable assignments for the observed Raman lines were made in comparison with ethyl acetate spectrum.
Resumo:
Background: Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. Methods: A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step-gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. Results: Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 mu g/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50: 50) and showed IC50 at 91 mu g/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. Conclusions: Our study therefore demonstrates presence of anticancer and anti-HPV an activity in B. pinnata leaves that can be further exploited as a potential anticancer, anti-HPV therapeutic for treatment of HPV infection and cervical cancer.
Resumo:
Bioactive compounds comprising secondary metabolites produced by endophytic fungi have wide applications in pharmacology and agriculture. Isolation, characterisation and evaluation of biological activities of secondary metabolites were carried out from Cochliobolus kusanoi an endophytic fungus of Nerium oleander L. The fungus was identified based on 18S rDNA sequence analysis. There are no reports available on the compounds of C. kusanoi hence, antimicrobial metabolite produced by this fungus was extracted and purified by fractionation using hexane, diethyl ether, dichloromethane, ethyl acetate and methanol. Out of all the solvent fractions, the methanol fraction exhibited better antimicrobial activity which was further purified and characterised as oosporein. Oosporein from C. kusanoi exhibited broad spectrum in vitro antimicrobial, antioxidant and cytotoxic activities. The characterisation and antioxidant activity of oosporein from C. kusanoi are reported for the first time.
Resumo:
Thirteen host guest compounds of 3,5-dihydroxybenzoic acid (DHBA) have been structurally characterized. Water molecules occupy the peripheries of a hexagonal void, created with DHBA molecules, and act as ``hooks'' to connect the guest molecules with the host-framework via hydrogen bonding. The ``water hook'' is an OH group acting as a donor. Consequently, the guest molecules were chosen so that they contain good hydrogen bond acceptor functionalities. A number of multicomponent hydrates were isolated with stoichiometries (DHBA)(x)(H2O). (guest),. Of these, compounds with the following as guests were obtained as crystals that were good enough for single crystal work: ethyl acetate (EtOAc), diethyl oxalate, dimethyl oxalate, di(n-propyl) oxalate, diethyl malonate, diethyl succinate, chloroacetonitrile, N,N-dimethyl formamide (DMF), acetone, dimethyl sulfoxide (DMSO), 1-propanol, and 2-butanol. From 2-butanol, a hemihydrate, (DHBA)(2)(H2O), was also obtained concomitantly. Further to guest stabilization, water acts as a good mediator of effective crystal packing and also determines the topology of the host framework. En the present series of compounds, the role of water is wide ranging, and it is not easy to classify it specifically as a host or as a guest.
Resumo:
Controlled pyrolysis of Al(OBus)(3), Zr(OPrn)(4) and their mixtures in ethyl acetate induced using microwaves of 2.45 GHz frequency has been carried out. Microwave irradiation yields second-stage precursors for the preparation of respective oxides and their composites. It is observed that the microwave irradiation has a directive influence on the morphology of the ultimate oxide products. Al2O3, ZrO2 and the two composites 90% Al2O3-10% ZrO2 and 90% ZrO2-10% Al2O3 are also found to be sintered to very high densities within 35 min of microwave irradiation by the use of beta-SiC as a secondary susceptor.
Resumo:
Simple and rapid HPLC, GC, and TLC procedures have been developed for detection and determination of nimesulide, a non-pharmacopeial drug, in preformulation and dosage form. Use of these techniques has enabled separation of impurities and the precursor in the bulk material and in formulations. Isocratic reversed-phase HPLC was performed on a C-18 column with methanol-water-acetic acid, 67:32:1 (v/v), as mobile phase and UV detection at 230 nm. Calibration curves were linear over the concentration range 100-1000 mug mL(-1) with a good correlation coefficient (0.9993) and a coefficient of variation of 1.5%. Gas chromatography was performed on an OV-17 packed column with temperature programming and flame-ionization detection. The lower limit of determination by HPLC and GC was 4 ppm. Thin-layer chromatography of nimesulide was performed on silica gel G with toluene-ethyl acetate, 8:2, as mobile phase. Stability testing of the drug was performed under different temperature, humidity, and UV-radiation conditions.
Resumo:
Haloperidol, an antipsychotic drug, was screened for new solid crystalline phases using high throughput crystallization in pursuit of solubility improvement. Due to the highly basic nature of the API, all the solid forms with acids were obtained in the form of salts. Eleven crystalline salts in the form of oxalate (1:1), benzoate (1:1), salicylate (1:1 and 1:2), 4-hydroxybenzoate (1:1), 4-hydroxybenzoate ethyl acetate solvate (1:1:1), 3,4-dihydroxybenzoate (1:1), 3,5-dihydroxybenzoate (1:1), mesylate (1:1), besylate (1:1), and tosylate (1:1) salt were achieved. There is an insertion of carboxylate or sulfonate anion into the hydrogen bonding pattern of haloperidol. The salts with the aliphatic carboxylic acids were found to be more prone to form salt hydrates compared with aromatic carboxylate salts. All the salts were subjected to solubility measurement in water at neutral pH. There was no direct correlation observed between the solubility of the salt and its coformer. All the salts are stable at room temperature as well as after 24 h slurry experiment except the oxalate salt, which showed an unusual phase transformation from its hydrated form to the anhydrous form. A structureproperty relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.
Resumo:
Some transformation reactions of α-pinene to give 4- and 3-membered ring compounds, not hitherto obtained from this source, are described. The study furnished a convenient method of preparation of the optically active cyclobutanone IVa, the title compound which served as the key substrate for all the transformations reported.
Resumo:
A mechanism for the isomerisation of ethyl 1-ethoxycarbonyl-2-oxocyclopentylacetate (I) into a cyclohexane β-keto-ester as proceeding through an intermediate bicyclic /gb-diketone (VII) has been considered as an alternative mechanism to one earlier suggested.1 The determination of the structure of the isomerised β-keto-ester as 2, 3-diethoxycarbonylcyclohexanone (V) has provided support for the earlier mechanism.
Resumo:
An efficient Friedel-Crafts alkylation of aromatic compounds with ethyl alpha -chloro-alpha-(ethylthio)acetate catalysed by ytterbium triflate, followed by desulfurisation of the product provides a convenient methodology for the synthesis of ethyl arylacetates of aromatic and heteroaromatic compounds. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010
Resumo:
In standard laboratory consolidation tests, only the fraction of soil passing through a particular size of the sieve, called the matrix material, is used. This size is usually restricted to 1/10 of the height of the consolidation ring. Particles larger than this size that are removed before the test may consist of gravel, fragments of rock, or other coarse materials. Hence, it is not possible to estimate the compressibility and permeability of the total material based on the compressibility and permeability behavior obtained from laboratory consolidation tests on the matrix material. In the present investigation an attempt has been made to estimate the compressibility and permeability behavior of the total material based on the compressibility and permeability behavior of the matrix material. The results indicate that the presence of coarse particles will reduce the compressibility of the soil in proportion to the coarse fraction present in the whole soil and will not affect the permeability of the soil for the range investigated. If the coarse fraction exceeds the Limiting percentage, the void ratio-vertical effective stress path will also start to deviate from the predicted path. An expression has been developed to estimate approximately the deviating pressure, and it is found to depend on the soil type as well as the percent clay fraction.