11 resultados para ethics in the real world

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water brings its remarkable thermodynamic and dynamic anomalies in the pure liquid state to biological world where water molecules face a multitude of additional interactions that frustrate its hydrogen bond network. Yet the water molecules participate and control enormous number of biological processes in manners which are yet to be understood at a molecular level. We discuss thermodynamics, structure, dynamics and properties of water around proteins and DNA, along with those in reverse micelles. We discuss the roles of water in enzyme kinetics, in drug-DNA intercalation and in kinetic-proof reading ( the theory of lack of errors in biosynthesis). We also discuss how water may play an important role in the natural selection of biomolecules. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the fraction of each grid cell equipped for irrigation according to datasets from the Food and Agriculture Organization. Results indicate substantial regional differences in the magnitude of irrigation-induced cooling, which are attributed to three primary factors: differences in extent of the irrigated area, differences in the simulated soil moisture for the control simulation (without irrigation), and the nature of cloud response to irrigation. The last factor appeared especially important for the dry season in India, although further analysis with other models and observations are needed to verify this feedback. Comparison with observed temperatures revealed substantially lower biases in several regions for the simulation with irrigation than for the control, suggesting that the lack of irrigation may be an important component of temperature bias in this model or that irrigation compensates for other biases. The results of this study should help to translate the results from past regional efforts, which have largely focused on the United States, to regions in the developing world that in many cases continue to experience significant expansion of irrigated land.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with haptic realism related to Kinematic capabilities of the devices used in manipulation of virtual objects in virtual assembly environments and its effect on achieving haptic realism. Haptic realism implies realistic touch sensation. In virtual world all the operations are to be performed in the same way and with same level of accuracy as in the real world .In order to achieve realism there should be a complete mapping of real and virtual world dimensions. Experiments are conducted to know the kinematic capabilities of the device by comparing the dimensions of the object in the real and virtual world. Registered dimensions in the virtual world are found to be approximately 1.5 times that of the real world. Dimensional variations observed were discrepancy due to exoskeleton and discrepancy due to real and virtual hands. Experiments are conducted to know the discrepancy due to exoskeleton and this discrepancy can be taken care of by either at the hardware or software level. A Mathematical model is proposed to know the discrepancy between real and virtual hands. This could not give a fixed value and can not be taken care of by calibration. Experiments are conducted to figure out how much compensation can be given to achieve haptic realism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grid-connected systems when put to use at the site would experience scenarios like voltage sag, voltage swell, frequency deviations and unbalance which are common in the real world grid. When these systems are tested at laboratory, these scenarios do not exist and an almost stiff voltage source is what is usually seen. But, to qualify the grid-connected systems to operate at the site, it becomes essential to test them under the grid conditions mentioned earlier. The grid simulator is a hardware that can be programmed to generate some of the typical conditions experienced by the grid-connected systems at site. It is an inverter that is controlled to act like a voltage source in series with a grid impedance. The series grid impedance is emulated virtually within the inverter control rather than through physical components, thus avoiding the losses and the need for bulky reactive components. This paper describes the design of a grid simulator. Control implementation issues are highlighted in the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, efficient scheduling algorithms based on Lagrangian relaxation have been proposed for scheduling parallel machine systems and job shops. In this article, we develop real-world extensions to these scheduling methods. In the first part of the paper, we consider the problem of scheduling single operation jobs on parallel identical machines and extend the methodology to handle multiple classes of jobs, taking into account setup times and setup costs, The proposed methodology uses Lagrangian relaxation and simulated annealing in a hybrid framework, In the second part of the paper, we consider a Lagrangian relaxation based method for scheduling job shops and extend it to obtain a scheduling methodology for a real-world flexible manufacturing system with centralized material handling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bearing area analysis has been used to study the real area of contact and compliance of rough turned steel cylinders in compression. Calculations show that the elastic real area of contact is very small compared to the plastic real area of contact, and that local compliance due to flattening of asperity tips is a small proportion of the total compliance obtained from experiments. The fact that increased load brings more and more new asperities under load rather than enlarging the contact spots leads to a rather simple load-compliance relation for a rough cylinder, viz., W' = Nh · K1δn, where W0 = K1δn defines the load-compliance relation of the individual asperities, and Nh represents the number of asperities bearing the load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface electrodes in Electrical Impedance Tomography (EIT) phantoms usually reduce the SNR of the boundary potential data due to their design and development errors. A novel gold sensors array with high geometric precision is developed for EIT phantoms to improve the resistivity image quality. Gold thin films are deposited on a flexible FR4 sheet using electro-deposition process to make a sixteen electrode array with electrodes of identical geometry. A real tissue gold electrode phantom is developed with chicken tissue paste and the fat cylinders as the inhomogeneity. Boundary data are collected using a USB based high speed data acquisition system in a LabVIEW platform for different inhomogeneity positions. Resistivity images are reconstructed using EIDORS and compared with identical stainless steel electrode systems. Image contrast parameters are calculated from the resistivity matrix and the reconstructed images are evaluated for both the phantoms. Image contrast and image resolution of resistivity images are improved with gold electrode array.