59 resultados para ether extract
em Indian Institute of Science - Bangalore - Índia
Resumo:
Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.
Resumo:
Total synthesis of the dimethyl ether of marsupsin, in seven steps starting from phloroglucinol, is described.
Silicon Tetrachloride/Sodium Iodide as a Convenient and Highly Regioselective Ether Cleaving Reagent
Resumo:
Abstract is not available.
Resumo:
Ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina was evaluated for antiovulatory activity in adult rats. The ethanol extract at the doses 200 and 400mg/kg body weight (orally) affected the normal estrous cycle showing a significant increase in estrus and metestrus phases and decrease in diestrus and proestrus phases. The extract also significantly reduced the number of healthy follicles (Class I-Class VI) and corpora lutea and increased the number of regressing follicles (Stage IA, Stage IB, Stage IIA, and Stage IIB). The protein and glycogen content in the ovaries were significantly reduced in treated rats. The cholesterol level was significantly increased, whereas, the enzyme activities like 3b-HSD and 17b-HSD were significantly inhibited in the ovary of treated rats. Serum FSH and LH levels were significantly reduced in the treated groups were measured by RIA. In acute toxicity test, neither mortality nor change in the behavior or any other physiological activities in mice were observed in the treated groups. In chronic toxicity studies, no mortality was recorded and there were no significant differences in the body and organ weights were observed between controls and treated rats. Hematological analysis showed no significant differences in any of the parameters examined (RBC, WBC count and Hemoglobin estimation). These observations showed the antiovulatory activity of ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina in female albino rats.
Resumo:
AlI3 is an easily accessible and versatile ether-cleaving reagent.
Resumo:
Porphyrins appended with crown ether, benzo-15-crown-5, at the methine positions have been synthesized and characterized. The fully and partially substituted porphyrins and their metallo (Co, Cu, and Zn) derivatives describe one or more ether cavities in the periphery that are capable of recognizing spherical cations. The ability of these macrocycles to complex cations (Na+, K+, Mg2+, Ca2+, Ba2', and NH4+) is investigated by use of visible, 'H NMR, ESR, and emission spectral studies. The tetrasubstituted crown porphyrin (TCP) exhibits very high selectivity for K+. The cations (K', Ba2+, and NH4+) that require two crown ether cavities for complexation promote dimerization of the porphyrins. The ESR study of the cation-induced porphyrin dimers reveals axial symmetry with the porphyrin planes separated by -4.2 A. This distance increases from the fully substituted to partially substituted porphyrins. The cations (K', Ba2+, and NH4') quench efficiently the fluorescence of the free base porphyrins and their metallo derivatives. The quenching process is attributed to the steric geometry of the dimers.
Resumo:
Aim of the study: Chloranthus erectus (Buch.-Ham.) Verdcourt (Chloranthaceae) is a shrub native to tropical and temperate zone of Eastern Himalaya of India and South-East Asia and have traditionally been used as a folklore medicine to treat localised swelling, joint pain, skin inflammation, fever and bodyache. In this study, an attempthas been made to demonstrate the anti-inflammatory activity of methanol extract obtained from Chloranthus erectus leaves (MECEL) in acute, sub-acute and chronic mouse models. Materials and methods: Inflammation in the hind paw of Wistar albino rat was induced by carrageenan, histamine and serotonin, and tissue granuloma pouch was induced by cotton pellet method. Antiinflammatory drug-phenylbutazone was used as standard drug for comparison. Results: In acute carrageenan-induced rat hind paw edema, oral administration of MECEL at 200 mg/kg produced significant inhibition of edema by 38.34 % (p<0.01) while the histamine- and serotonin-induced sub-acute model, the inhibition of paw edema reached 52.54 % (p < 0.001) and 25.5 % (p < 0.01), respectively. in a 7-day study, MECEL at 20 and 50 mg/kg produced significant suppression of cotton pellet-induced tissue granuloma formation in rats. Conclusions: This preliminary study revealed that the methanol extract of Chloranthus erectus exhibited significant anti-inflammatory activity in the tested models, and may provide the scientific rationale for its popular folk medicine as anti-inflammatory agent.
Resumo:
Eight cholesterol based cationic lipids differing in the headgroup have been synthesized based on the ether linkage between the cationic headgroup and the cholesterol backbone. All the lipids formed stable suspensions in water. Transfection efficacies were examined in the absence and presence of serum using their optimized liposomal (lipid:DOPE) formulations. Our results showed that the transfection activities depend on the nature of the headgroup. Lipid bearing 4-N,N′-dimethylaminopyridine (DMAP) as headgroup showed the maximum transfection efficacy in the presence of serum. Importantly, the optimized formulation for this cationic lipid does not require DOPE, which is being used by most commercially available formulations. Cytotoxicity studies showed that the introduction of the positive charge decreases the cell viability of the cationic lipid formulations. Gel electrophoresis and Ethidium bromide exclusion assay revealed the different DNA binding abilities of formulations depending upon the headgroup of the cholesteryl lipid.
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
Vapor-liquid equilibrium data for the systems diisopropyl ether-n-heptane and diisopropyl ether-carbon tetrachloride have been reported at pressures of 760, 1520, and 2280 mm. of Hg. The systems form ideal mixtures under the pressure range studied.
Resumo:
Amyloid beta (A beta) is the major etiological factor implicated in Alzheimer's disease (AD). A beta(42) self-assembles to form oligomers and fibrils via multiple aggregation process. The recent studies aimed to decrease A beta levels or prevention of A beta aggregation which are the major targets for therapeutic intervention. Natural products as alternatives for AD drug discovery are a current trend. We evidenced that Caesalpinia crista leaf aqueous extract has anti-amyloidogenic potential. The studies on pharmacological properties of C. crista are very limited. Our study focused on ability of C. crista leaf aqueous extract on the prevention of (i) the formation of oligomers and aggregates from monomers (Phase I: A beta(42) + extract co-incubation); (ii) the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) dis-aggregation of pre-formedfibrils (Phase III: aqueous extract added to matured fibrils and incubated for 9 days). The aggregation kinetics was monitored using thioflavin-T assay and transmission electron microscopy (TEM). The results showed that C. crista aqueous extract could able to inhibit the A beta(42) aggregation from monomers and oligomers and also able todis-aggregate the pre-formed fibrils. The study provides an insight on finding new natural products for AD therapeutics. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective : The main objective of this work was to study the antipyretic and antibacterial activity of C. erectus (Buch.-Ham.) Verdcourt leaf extract in an experimental albino rat model. Materials and Methods : The methanol extract of C. erectus leaf (MECEL) was evaluated for its antipyretic potential on normal body temperature and Brewers yeast-induced pyrexia in albino rats model. While the antibacterial activity of MECEL against five Gram (-) and three Gram () bacterial strains and antimycotic activity was investigated against four fungi using agar disk diffusion and microdilution methods. Result : Yeast suspension (10 mL/kg b.w.) elevated rectal temperature after 19 h of subcutaneous injection. Oral administration of MECEL at 100 and 200 mg/kg b.w. showed significant reduction of normal rectal body temperature and yeast-provoked elevated temperature (38.8 0.2 and 37.6 0.4, respectively, at 2-3 h) in a dose-dependent manner, and the effect was comparable to that of the standard antipyretic drug-paracetamol (150 mg/kg b.w.). MECEL at 2 mg/disk showed broad spectrum of growth inhibition activity against both groups of bacteria. However, MECEL was not effective against the yeast strains tested in this study. Conclusion : This study revealed that the methanol extract of C. erectus exhibited significant antipyretic activity in the tested models and antibacterial activity as well, and may provide the scientific rationale for its popular use as antipyretic agent in Khamptiss folk medicines.