103 resultados para estrutura vertical
em Indian Institute of Science - Bangalore - Índia
Resumo:
The problem of mixed convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable wall temperature conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5-2.0.
Resumo:
Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of similar to 2-4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e(-1) scaling distance (D-0H) as small as similar to 150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower (similar to 600-800 km); nevertheless, they were steep compared to the value of similar to 1500-2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to similar to 750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (> 2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of < 300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.
Resumo:
We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter = 9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 10(8). Under these conditions the convection is turbulent, and the time-averaged velocity at any point is `zero'. The Reynolds number based on the Taylor microscale, Re-lambda, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6-7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as (RaSc1/2)-Sc-1/2, and the Reynolds number would scale as (RaSc-1/2)-Sc-1/2. The velocity and the flux measurements appear to be consistent with the Ra-1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are Much higher compared to what would be obtained in Rayleigh-Benard (R-B) convection for similar density differences.
Resumo:
An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.
Resumo:
Conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically. The governing equations are discretized on a staggered mesh and are solved using a pressure-correction algorithm. A parametric study is performed by varying the Grashof number, aspect ratio, and the solid-to-fluid thermal conductivity ratio over wide ranges with the Prandtl number fixed at 0.7. Results are presented for the variation of several quantities of interest such as the local Nusselt numbers on the inner and outer boundaries, the axial variation of the centerline and interface temperatures, maximum solid, average solid and average interface temperature variations with Grashof number, and the average Nusselt number variation for the inner and outer boundaries with Grashof number. The average Nusselt number from the conjugate analysis is found to be between the Nusselt numbers of the isothermal and the isoflux cases. The average Nusselt numbers on the inner and outer boundaries show an increasing trend with the Grashof number. Correlations are presented for the Nusselt number and the dimensionless temperatures of interest in terms of the parameters of the problem.
Resumo:
The vertical uplift resistance of two interfering rigid rough strip anchors embedded horizontally in sand at shallow depths has been examined. The analysis is performed by using an upper bound theorem o limit analysis in combination with finite elements and linear programming. It is specified that both the anchors are loaded to failure simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (xi(gamma)) is determined. On account of interference, the magnitude of xi(gamma) is found to reduce continuously with a decrease in the spacing between the anchors. The results from the numerical analysis were found to compare reasonably well with the available theoretical data from the literature.
Resumo:
MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.
Resumo:
Abstract is not available.
Resumo:
Data on free convection heat transfer to water and mercury are collected using a test rig in vertical annuli of three radii ratios, the walls of which are maintained at uniform temperatures. A theoretical analysis of the boundary layer equations has been attempted using local similarity transformation and double boundary layer approach. Correlations derived from the present theoretical analysis are compared with the analysis and the experimental data available in literature for non-metallic fluids and also with the present experimental data on water and mercury. Generalised correlations are set up for expressing the ratio of heat transferred by convection to the heat transferred by pure conduction and Nusselt's number, in terms of Grashof, Rayleigh and Prandtl numbers, based on the theoretical analysis and the present data on mercury and water. The present generalised correlations agree with the reported and present data for non-metallic fluids and liquid metals with an average deviation of 9% and maximum deviation of ± 13.7%.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
In this paper, analog solutions are presented for the response of a circular footing resting on an elastic half-space with uniform and parabolic contact pressure distributions and subjected to frequency dependent and frequency independent excitations. In addition, an analog solution to a rigid circular footing subjected to frequency dependent excitation is also presented. The results have been compared with the rigorous solution of Sung and the agreement is found to be good.
Resumo:
The flow of single large liquid bubbles under gravity in closed tubes is studied here for the case when the liquid bubble exhibits micropolar behaviour. The film thickness, velocity profile in the bubble and film, and nonNewtonian effects are studied and compared with those for the correspondingNewtonian fluid. The investigation is restricted to the case where the bubble length is far greater than the tube radius.
Resumo:
The vertical uplift resistance of circular plate anchors, embedded horizontally in a clayey stratum whose cohesion increases linearly with depth, has been obtained under undrained (phi = 0) condition. The axi-symmetric static limit analysis formulation in combination with finite elements proposed recently by the authors has been employed. The variation of the uplift factor (F,) with changes in the embedment ratio (H/B) has been computed for several rates of increases of soil cohesion with depth. It is noted that in all the cases, the magnitude of F-c increases continuously with depth up to a certain value of H-cr/B beyond which the uplift factor becomes essentially constant. The proposed static limit analysis formulation is seen to provide acceptable results even for the two other simple chosen axi-symmetric problems.