18 resultados para enzymology

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The winged-bean tuber lectin binds to N-dansyl(5-dimethylaminonaphthalene-1-sulphonic acid)galactosamine, leading to a 12.5-fold increase in dansyl fluorescence with a concomitant 25 nm blue-shift in the emission maximum. The enhancement of fluorescence intensity was completely reversed by the addition of methyl α-galactopyranoside. The lectin has two binding sites per molecule for this fluorescent sugar and an association constant of 2.59 · 105 M−1 at 25° C. The binding of N-dansylgalactosamine to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of d-galactose. Studies with other sugars indicate that a hydrophobic substituent with α-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are also critical for sugar binding to this lectin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. 1. An increase in the oxidation of succinate by hepatic mitochondria in rats exposed to hypoxia (O2-N2; 1:9, v/v) or hypobaria (0.5 atm) was observed which appears to be due to modification of the activity of the rate-limiting succinate dehydrogenase [succinate: (acceptor) oxidoreductase, EC 1.3.99.1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. 1.|Carotene 15,15′-dioxygenase (EC 1.13.11.21) has been isolated from the intestine of guinea pig and rabbit and purified 38- and 30-fold, respectively, but subjecting the intestinal homogenate to protamine sulfate treatment, (NH4)2SO4 fractionation and acetone precipitation. 2. 2.|The guinea pig enzyme showed a pH optimum at 8.5, an optimum substrate concentration of 200 nmoles of β,β-carotene per 25 ml of reaction mixture, an apparent Km with β,β-carotene as substrate of 9.5 · 10−6 M and a V 3.3 nmoles of retinal formation/mg protein per h. The reaction was linear upto 3 h and the reaction rate increased linearly with increase in enzyme protein concentration. The enzyme was activated by GSH and Fe2+ and inhibited by sodium dodecylsulfate, sulfhydryl binding and iron chelating agents. 3. 3.|The reaction catalysed by guinea pig enzyme was strictly stoichiometric. 4. 4.|Rabbit enzyme showed a close similarity with guinea pig enzyme with respect to time course, optimum substrate concentration, activation by Fe2+ and GSH, inhibition by sodium dodecylsulfate, iron chelating and sulfhydryl binding agents. However, it showed a slightly lower pH optimum (pH 7.8). 5. 5.|The enzyme from guinea pig and rabbit showed remarkable similarity with respect to cleavage of carotenoids. The enzyme from both the species was more specific for β,β-carotene but could also cleave a number of other carotenoids at the 15,15′-double bond. 6. 6.|10′-Apo-β-carotenal and 10′-apo-β-carotenol were readily cleaved compared with other apo-β-carotenals and apo-β-carotenols tested. 7. 7.|It has been conclusively shown for the first time that mono-ring substituted carotenoids are also cleaved at the 15,15′-double bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. 1. Diverse classes of compounds such as dicarboxylates, pyrophosphates, quinols and nitrophenols are known to activate mitochondrial succinate dehydrogenase (EC 1.3.99.1). Examples in each class — malonate, pyrophosphate, ubiquinol and 2,4-dinitrophenol — are selected for comparative studies on the kinetic constants and structural relationship. 2. 2. The activated forms of the enzyme obtained on preincubating mitochondria with the effectors exhibited Michaelian kinetics and gave doublereciprocal plots which are nearly parallel to that of the basal form. On activation, Km for the substrate also increased along with V. The effectors activated the enzyme at low concentrations and inhibited, in a competitive fashion, at high concentrations. The binding constant for activation was lower than that for inhibition for each effector. 3. 3. These compounds possess ionizable twin oxygens separated by a distance of Image and having fractional charges in the range of −0.26 to −0.74 e. The common twin-oxygen feature of the substrate and the effectors suggested the presence of corresponding counter charges in the binding domain. The competitive nature of effectors with the substrate for inhibition further indicated the close structural resemblance of the activation and catalytic sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The induction of nitrate reductase (NADPH:nitrate oxidoreductase, EC 1.6.6.3) by nitrate in Neurospora crassa and its control by amino acids have been studied. The growth-inhibitory amino acids, isoleucine and cysteine as well as the growth-promotory ones, glutamine, asparagine, arginine, histidine and NH4+, repress nitrate reductase effectively. Methionine, tryptophan, proline, aspartic acid and glutamic acid exert little control on nitrate reductase. The repression of nitrate reductase by cysteine, isoleucine, glutamine and asparagine is accompanied by inactivation of the enzyme present initially. The nitrate-induced NADPH-cytochrome c reductase (NADPH:cytochrome c oxidoreductase, EC 1.6.2.3) is also repressed by amino acids which control nitrate reductase, providing further evidence to show that these two enzyme activities may reside in the same protein. Catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6) has been found to be induced subsequent to the induction of nitrate reductase by nitrate in N. crassa. The induction of catalase is probably by its substrate H2O2 which would be formed by the interaction of the flavine component of nitrate reductase with oxygen. The amino acids which control nitrate reductase, repress catalase also. The catalase level appears to be determined by the nitrate reductase activity of the mycelia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1.The reported inhibition of the succinate oxidase system at high concentrations of dinitrophenol, considered to be at the primary dehydrogenase level, is now confirmed by measuring the activity of succinate dehydrogenase (succinate:(acceptor) oxidoreductase, EC 1.3.99.1) in the presence of dinitrophenol, using the dye reduction method. 2. 2. The results indicate that the inhibition of substrate-activated succinate dehydrogenase by dinitrophenol is competitive. 3. 3. Low concentrations of dinitrophenol inhibited the basal activity, while at higher concentrations the kinetics were complicated by an apparent activation. 4. 4. Preincubation of mitochondria with dinitrophenol stimulated the enzyme activity, a phenomenon shown by succinate and competitive inhibitors. This activation was very rapid at 37°, compared to that by succinate; activation by dinitrophenol was observed even at 25°, under conditions where succinate had no effect. 5. 5. Repeated washing of the activated mitochondrial samples with the sucrose homogenizing medium reduced the succinate-stimulated activity to the basal level, but only partially reversed the dinitrophenol activation. 6. 6. The relevance of this activation phenomenon to the physiological modulation of this enzyme system is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incubation of glyceraldehyde-3-phosphate dehydrogenase (GAPD) with sodium nitroprusside (SNP) decreased its activity in concentration- and time-dependent fashion in the presence of a thiol compounds, with DTT being more effective than GSH. Both forward and backward reactions were effected. Coinciding with this, HgCl2-sensitive labelling of the protein by [32P]NAD+ also increased, indicating the stimulation of ADP-ribosylation. Treatment with SNP of GAPD samples from rabbit muscle, sheep brain and yeast inactivated the dehydrogenase activity of the three, but only the mammalian proteins showed ADP-ribosylation activity. The SNP-modified protein of rabbit muscle GAPD, freed from the reagent by Sephadex filtration showed a concentration-dependent restoration of the dehydrogenase activity on preincubation with DTT and GSH. Such thiol-treated preparations also gave increased ADP-ribosylation activity with DTT, and to a lesser extent with GSH. The SNP-modified protein was unable to catalyze this activity with the native yeast enzyme and native and heat-inactivated muscle enzyme. It was possible to generate the ADP-ribosylation activity in muscle GAPD, by an NO-independent mechanism, on dialysis in Tris buffer under aerobic conditions , and on incubating with NADPH, but not NADH, in muscle and brain, but not yeast, enzymes. The results suggest that the inverse relationship of the dehydrogenase and ADP-ribosylation activities is coincidental but not correlated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment with diallyl disulfide, a constituent of garlic oil, irreversibly inactivated microsomal and a soluble 50 kDa form of HMG-CoA reductase. No radioactivity was found to be protein-bound on treating the soluble enzyme with [35S]diallyl disulfide, indicating the absence of the mixed disulfide of the type allyl-S-S-protein. SDS-PAGE and Western blot analyses of the diallyl-disulfide-treated protein showed no traces of the dimer of the type protein-S-S-protein, but clearly indicated BME-reversible increased mobility, as expected of an intramolecular protein disulfide. The sulfhydryl groups, as measured by alkylation with iodo[2-14C]acetic acid, were found to decrease in the diallyl-disulfide-treated enzyme protein. Tryptic peptide analysis also gave support for the possible presence of disulfide-containing peptides in such a protein. It appears that diallyl disulfide inactivated HMG-CoA reductase by forming an internal protein disulfide that became inaccessible for reduction by DTT, and thereby retaining the inactive state of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addition of NADH inhibited the peroxidative loss of scopoletin in presence of horseradish peroxidase and H2O2 and decreased the ratio of scopoletin (consumed):H2O2 (added). Concomitantly NADH was oxidized and oxygen was consumed with a stoichiometry of NADH: O-2 of 2:1. On step-wise addition of a small concentration of H2O2 a high rate of NADH oxidation was obtained for a progressively decreasing time period followed by termination of the reaction with NADH:H2O2 ratio decreasing from about 40 to 10. The rate of NADH oxidation increased linearly with increase in scopoletin concentration. Other phenolic compounds including p-coumarate also supported this reaction to a variable degree. A 418-nm absorbing compound;d accumulated during oxidation of NADH. The effectiveness of a small concentration of H2O2 in supporting NADH oxidation increased in presence of SOD and decreased in presence of cytochrome c, but the reaction terminated even in their presence. The results indicate that the peroxidase is not continuously generating H2O2 during scopolerin-mediated NADH oxidation and that both peroxidase and oxidase reactions occur simultaneously competing for an active form of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT), EC 2.1.2.1, exhibits broad substrate and reaction specificity. In addition to cleaving many 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzed the decarboxylation, transamination and racemization of several substrate analogues of amino acids. To elucidate the mechanism of interaction of substrates, especially L-serine with the enzyme, a comparative study of interaction of L-serine with the enzyme from sheep liver and Escherichia coli, was carried out. The heat stability of both the enzymes was enhanced in the presence of serine, although to different extents. Thermal denaturation monitored by spectral changes indicated an alteration in the apparent T, of sheep liver and E. coli SHMTs from 55 +/- 1 degrees C to 72 +/- 3 degrees C at 40 mM serine and from 67 +/- 1 degrees C to 72 +/- 1 degrees C at 20 mM serine, respectively. Using stopped flow spectrophotometry k values of (49 +/- 5)(.)10(-3) s(-1) and (69 +/- 7).10(-3) s(-1) for sheep liver and E. coli enzymes were determined at 50 mM serine. The binding of serine monitored by intrinsic fluorescence and sedimentation velocity measurements indicated that there was no generalized change in the structure of both proteins. However, visible CD measurements indicated a change in the asymmetric environment of pyridoxal 5'-phosphate at the active site upon binding of serine to both the enzymes. The formation of an external aldimine was accompanied by a change in the secondary structure of the enzymes monitored by far UV-CD spectra. Titration microcalorimetric studies in the presence of serine (8 mM) also demonstrated a single class of binding and the conformational changes accompanying the binding of serine to the enzyme resulted in a more compact structure leading to increased thermal stability of the enzyme.