2 resultados para environmental health

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Freshwater ecosystems vary in size and composition and contain a wide range of organisms which interact with each other and with the environment. These interactions are between organisms and the environment as nutrient cycling, biomass formation and transfer, maintenance of internal environment and interactions with the external environment. The range of organisms present in aquatic communities decides the generation and transfer function of biomass, which defines and characterises the system. These organisms have distinct roles as they occupy particular trophic levels, forming an interconnected system in a food chain. Availability of resources and competition would primarily determine the balance of individual species within the food web, which in turn influences the variety and proportions of the different organisms, with important implications for the overall functioning of the system. This dynamic and diverse relationship decides the physical, chemical and biological elements across spatial and temporal scales in the aquatic ecosystem, which can be recorded by regular inventorying and monitoring to maintain the integrity and conserve the ecosystem. Regular environmental monitoring, particularly water quality monitoring allows us to detect, assess and manage the overall impacts on the rivers. The appreciation of water quality is in constant flux. Water quality assessments derived through the biotic indices, i.e. assessments based on observations of the resident floral and faunal communities has gained importance in recent years. Biological evaluations provide a description of the water quality that is often not achievable from elemental analyses alone. A biological indicator (or bioindicator) is a taxon or taxa selected based on its sensitivity to a particular attribute, and then assessed to make inferences about that attribute. In other words, they are a substitute for directly measuring abiotic features or other biota. Bioindicators are evaluated through presence or absence, condition, relative abundance, reproductive success, community structure (i.e. composition and diversity), community function (i.e. trophic structure), or any combination thereof.Biological communities reflect the overall ecological integrity by integrating various stresses, thus providing a broad measure of their synergistic impacts. Aquatic communities, both plants and animals, integrate and reflect the effects of chemical and physical disturbances that occur over extended periods of time. Monitoring procedures based on the biota measure the health of a river and the ability of aquatic ecosystems to support life as opposed to simply characterising the chemical and physical components of a particular system. This is the central purpose of assessing the biological condition of aquatic communities of a river.Diatoms (Bacillariophyceae), blue green algae (Cyanophyceae), green algae (Chlorophyceae), and red algae (Rhodphyceae) are the main groups of algae in flowing water. These organisms are widely used as biological indicators of environmental health in the aquatic ecosystem because algae occupy the most basic level in the transfer of energy through natural aquatic systems. The distribution of algae in an aquatic ecosystem is directly related to the fundamental factors such as physical, chemical and biological constituents. Soft algae (all the algal groups except diatoms) have also been used as indicators of biological integrity, but they may have less efficiency than diatoms in this respect due to their highly variable morphology. The diatoms (Bacillariophyceae) comprise a ubiquitous, highly successful and distinctive group of unicellular algae with the most obvious distinguishing characteristic feature being siliceous cell walls (frustules). The photosynthetic organisms living within its photic zone are responsible for about one-half of global primary productivity. The most successful organisms are thought to be photosynthetic prokaryotes (cyanobacteria and prochlorophytes) and a class of eukaryotic unicellular algae known as diatoms. Diatoms are likely to have arisen around 240 million years ago following an endosymbiotic event between a red eukaryotic alga and a heterotrophic flagellate related to the Oomycetes.The importance of algae to riverine ecology is easily appreciated when one considers that they are primary producers that convert inorganic nutrients into biologically active organic compounds while providing physical habitat for other organisms. As primary producers, algae transform solar energy into food from which many invertebrates obtain their energy. Algae also transform inorganic nutrients, such as atmospheric nitrogen into organic forms such as ammonia and amino acids that can be used by other organisms. Algae stabilises the substrate and creates mats that form structural habitats for fish and invertebrates. Algae are a source of organic matter and provide habitat for other organisms such as non-photosynthetic bacteria, protists, invertebrates, and fish. Algae's crucial role in stream ecosystems and their excellent indicator properties make them an important component of environmental studies to assess the effects of human activities on stream health. Diatoms are used as biological indicators for a number of reasons: 1. They occur in all types of aquatic ecosystems. 2. They collectively show a broad range of tolerance along a gradient of aquatic productivity, individual species have specific water chemistry requirements. 3. They have one of the shortest generation times of all biological indicators (~2 weeks). They reproduce and respond rapidly to environmental change and provide early measures of both pollution impacts and habitat restoration. 4. It takes two to three weeks before changes are reflected to a measurable extent in the assemblage composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.