6 resultados para endplate irregularity

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation coefficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle either from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than +/- 0.1 mrad (approximate to 0.036 mrad) and has an excellent repeatability with an error of less than 2%. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769756]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.