188 resultados para elliptic curves
em Indian Institute of Science - Bangalore - Índia
Resumo:
Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.
Resumo:
Let K be any quadratic field with O-K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over Q, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r + s + t = rst = 1 in O-K. This Diophantine equation gives an elliptic curve defined over Q with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of Q(i) and Q(root 2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].
Resumo:
We propose a generic three-pass key agreement protocol that is based on a certain kind of trapdoor one-way function family. When specialized to the RSA setting, the generic protocol yields the so-called KAS2 scheme that has recently been standardized by NIST. On the other hand, when specialized to the discrete log setting, we obtain a new protocol which we call DH2. An interesting feature of DH2 is that parties can use different groups (e.g., different elliptic curves). The generic protocol also has a hybrid implementation, where one party has an RSA key pair and the other party has a discrete log key pair. The security of KAS2 and DH2 is analyzed in an appropriate modification of the extended Canetti-Krawczyk security model.
Resumo:
Test results reported on several natural sensitive soils show significant anisotropy of the yield curves, which are generally oriented along the coefficient of earth pressure at rest (K-0) axis. An attempt is made in this paper to explain the anisotropy in yielding from microstructural considerations. An elliptic pore, with particle domains aligned along the periphery of the pore, and with the major axis of the pore being oriented along the direction of the in situ major principal stress, is chosen as the unit of microstructure. An analysis of forces at the interdomain contacts around the ellipse is carried out with reference to experimentally determined yield stress conditions of one soil, and a yield criteria is defined. The analysis, with the proposed yield criteria, enables one to define the complete yield curve for any other soil from the results of only two tests (one constant eta compression test with eta close to eta(K?0), where eta is the stress ratio (= q/p) and eta(K?0) is the stress ratio corresponding to anisotropic K-0 compression, and another undrained shear test). Predicted yield curves are compared with experimental yield curves of several soils reported in the literature.
Resumo:
An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.
Resumo:
We have analyzed the diameters of the liquid–liquid coexistence curves of several binary liquid mixtures in search of the critical anomaly predicted by current theories. We find that while the data are consistent with the predicted functional form, the evidence for such an anomaly is not compelling.
Resumo:
It has been shown that it is possible to extend the validity of the Townsend breakdown criterion for evaluating the breakdown voltages in the complete pd range in which Paschen curves are available. Evaluation of the breakdown voltages for air (pd=0.0133 to 1400 kPa · cm), N2(pd=0.0313 to 1400 kPa · cm) and SF6 (pd=0.3000 to 1200 kPa · cm) has been done and in most cases the computed values are accurate to ±3% of the measured values. The computations show that it is also possible to estimate the secondary ionization coefficient ¿ in the pd ranges mentioned above.
Resumo:
We prove that any arithmetically Gorenstein curve on a smooth, general hypersurface of degree at least 6, is a complete intersection. This gives a characterisation of complete intersection curves on general type hypersurfaces in . We also verify that certain 1-cycles on a general quintic hypersurface are non-trivial elements of the Griffiths group.
Resumo:
We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.
Resumo:
The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.
Resumo:
Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (p(pi)) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.
Resumo:
An a priori error analysis of discontinuous Galerkin methods for a general elliptic problem is derived under a mild elliptic regularity assumption on the solution. This is accomplished by using some techniques from a posteriori error analysis. The model problem is assumed to satisfy a GAyenrding type inequality. Optimal order L (2) norm a priori error estimates are derived for an adjoint consistent interior penalty method.
Resumo:
Let O be a monomial curve in the affine algebraic e-space over a field K and P be the relation ideal of O. If O is defined by a sequence of e positive integers some e - 1 of which form an arithmetic sequence then we construct a minimal set of generators for P and write an explicit formula for mu(P).