46 resultados para elliptic curve cryptography
em Indian Institute of Science - Bangalore - Índia
Resumo:
The highest levels of security can be achieved through the use of more than one type of cryptographic algorithm for each security function. In this paper, the REDEFINE polymorphic architecture is presented as an architecture framework that can optimally support a varied set of crypto algorithms without losing high performance. The presented solution is capable of accelerating the advanced encryption standard (AES) and elliptic curve cryptography (ECC) cryptographic protocols, while still supporting different flavors of these algorithms as well as different underlying finite field sizes. The compelling feature of this cryptosystem is the ability to provide acceleration support for new field sizes as well as new (possibly proprietary) cryptographic algorithms decided upon after the cryptosystem is deployed.
Resumo:
Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.
Resumo:
Let K be any quadratic field with O-K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over Q, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r + s + t = rst = 1 in O-K. This Diophantine equation gives an elliptic curve defined over Q with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of Q(i) and Q(root 2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].
Resumo:
Several papers have studied fault attacks on computing a pairing value e(P, Q), where P is a public point and Q is a secret point. In this paper, we observe that these attacks are in fact effective only on a small number of pairing-based protocols, and that too only when the protocols are implemented with specific symmetric pairings. We demonstrate the effectiveness of the fault attacks on a public-key encryption scheme, an identity-based encryption scheme, and an oblivious transfer protocol when implemented with a symmetric pairing derived from a supersingular elliptic curve with embedding degree 2.
Resumo:
Test results reported on several natural sensitive soils show significant anisotropy of the yield curves, which are generally oriented along the coefficient of earth pressure at rest (K-0) axis. An attempt is made in this paper to explain the anisotropy in yielding from microstructural considerations. An elliptic pore, with particle domains aligned along the periphery of the pore, and with the major axis of the pore being oriented along the direction of the in situ major principal stress, is chosen as the unit of microstructure. An analysis of forces at the interdomain contacts around the ellipse is carried out with reference to experimentally determined yield stress conditions of one soil, and a yield criteria is defined. The analysis, with the proposed yield criteria, enables one to define the complete yield curve for any other soil from the results of only two tests (one constant eta compression test with eta close to eta(K?0), where eta is the stress ratio (= q/p) and eta(K?0) is the stress ratio corresponding to anisotropic K-0 compression, and another undrained shear test). Predicted yield curves are compared with experimental yield curves of several soils reported in the literature.
Resumo:
We propose an exactly solvable model for the two-state curve-crossing problem. Our model assumes the coupling to be a delta function. It is used to calculate the effect of curve crossing on the electronic absorption spectrum and the resonance Raman excitation profile.
Resumo:
The paper reports a detailed determination of the coexistence curve for the binary liquid system acetonitrile+cyclohexane, which have very closely matched densities and the data points get affected by gravity only for t=(Tc−T)/ Tc[approximately-equal-to]10−6. About 100 samples were measured over the range 10−6
Resumo:
We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.
Resumo:
The coexistence curve of the binary liquid mixture n-heptane-acetic anhydride has been determined by the observation of the transition temperatures of 76 samples over the range of compositions. The functional form of the difference in order parameter, in terms of either the mole fraction or the volume fraction, is consistent with theoretical predictions invoking the concept of universality at critical points. The average value of the order parameter, the diameter of the coexistence curve, shows an anomaly which can be described by either an exponent 1 - a, as predicted by various theories (where a is the critical exponent of the specific heat), or by an exponent 20 (where P is the coexistence curve exponent), as expected when the order parameter used is not the one the diameter of which diverges asymptotically as 1 - a.
Resumo:
Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.
Resumo:
We have proposed a general method for finding the exact analytical solution for the multi-channel curve crossing problem in the presence of delta function couplings. We have analysed the case where aa potential energy curve couples to a continuum (in energy) of the potential energy curves.
Resumo:
Let X be a geometrically irreductble smooth projective cruve defined over R. of genus at least 2. that admits a nontrivial automorphism, sigma. Assume that X does not have any real points. Let tau be the antiholomorphic involution of the complexification lambda(C) of X. We show that if the action of sigma on the set S(X) of all real theta characteristics of X is trivial. then the order of sigma is even, say 2k and the automorphism tau o (sigma) over cap (lambda) of X-C has a fixed point, where (sigma) over cap is the automorphism of X x C-R defined by sigma We then show that there exists X with a real point and admitting a nontrivial automorphism sigma, such that the action of sigma on S(X) is trivial, while X/
Resumo:
One influential image that is popular among scientists is the view that mathematics is the language of nature. The present article discusses another possible way to approach the relation between mathematics and nature, which is by using the idea of information and the conceptual vocabulary of cryptography. This approach allows us to understand the possibility that secrets of nature need not be written in mathematics and yet mathematics is necessary as a cryptographic key to unlock these secrets. Various advantages of such a view are described in this article.