249 resultados para electrochemical electrodes

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of exfoliated graphite (EG)–ruthenium oxide (RuOx) composites as binderless electrodes is evaluated for electrochemical capacitors (ECs). A composite of EG–RuOx is prepared by a modified sol–gel process. The material is characterized using X-ray diffraction and microscopy. Electrochemical capacitors with the composite electrodes in the presence of aqueous sulfuric acid (H2SO4) electrolyte are evaluated using voltammetry, impedance and charge–discharge studies. Cyclic voltammetry reveals very stable current–voltage behaviour up to several thousands of cycles, as well as high specific capacitances, e.g., a few hundreds of farads per gram for the composite that contains 16.5 wt.% RuOx.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Redox supercapacitors using polyaniline (PANI) coated. stainless-steel (SS) electrodes have been assembled and characterized. PANI has been deposited on SS substrate by a potentiodynamic method from an acidic electrolyte which contains aniline monomer. By employing stacks of electrodes, each with a geometrical area of 24 cm(2), in acidic perchlorate electrolyte, a capacitance value of about 450 F has been obtained over a long cycle-life. Characterization studies have been carried out by galvanostatic charge-discharge cycling of the capacitors singly, as well as in series and parallel configurations. Various electrical parameters have been evaluated. Use of the capacitors in parallel with a battery for pulse-power loads. and also working of a toy fan connected to the charged capacitors have been demonstrated. A specific capacitance value of about 1300 F g(-1) of PANI has been obtained at a discharge power of about 0.5 kW kg(-1). This value is several times higher than those reported in the literature for PANI and is, perhaps, the highest value known for a capacitor material. The inexpensive SS substrate and the high-capacitance PANI are favorable factors for commercial exploitation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyaniline (PANI) has been studied as an active material for electrochemical capacitors. Polymerization of aniline to PANI has been carried out potentiodynamically on a stainless steel (SS) substrate, instead of Pt-based substrates generally employed for this application. The PANI/SS electrodes have been evaluated by assembling symmetrical capacitors in NaClO(4) + HClO(4) mixed electrolyte and subjecting them to galvanostatic charge/discharge cycles between 0 and 0.75 V. The effect of substrate has been assessed by comparing the capacitance of PANI/SS and PANI/Pt electrodes. The capacitance of PANI/SS electrode is higher than that of PANI/Pt electrode by several times. The effect of sweep rate of potentiodynamic deposition of PANI/SS on capacitance has been investigated. At a power density of 0.5 kW kg(-1), a capacitance value of 815 F g(-1) of PANI is obtained for the deposition sweep rate of 200 mV s(-1). Increase in thickness of PANI on the SS substrate results in an increase in capacitance of PANI. This value of capacitance is the highest ever reported for any electrochemical capacitor material. Thus, in addition to a favorable economic aspect involved in using SS instead of Pt or Pt-based substrate, the advantage of higher capacitance of PANI has also been achieved. (C) 2002 The Electrochemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modification of exfoliated graphite (EG) electrode with generation 2 poly(propylene imine) dendrimer by electrodeposition resulted in an electrochemical sensor which was used to detect lead ions in water to a limit of 1 ppb and a linear response between 2.5 and 40 ppb using square wave anodic stripping voltammetry (SW-ASV). Pb(II) was also removed from spiked water sample using a 40-mm diameter unmodified EG electrode with an applied potential of -1,000 mV for 180 min. A removal efficiency of 99% was calculated from a 150 mL sample. The results obtained in both cases using SW-ASV, correlated with atomic absorption spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (C-protein ca 1 ng/mu l). Reproducible measurements on protein samples at this concentration (I-p,I-a of 80 +/- 1.2 mu A) could be achieved using a sample volume of ca 30 mu l. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An in situ study of stress evolution and mechanical behavior of germanium as a lithium-ion battery electrode material is presented. Thin films of germanium are cycled in a half-cell configuration with lithium metal foil as counter/reference electrode, with 1M LiPF6 in ethylene carbonate, diethyl carbonate, dimethyl carbonate solution (1:1:1, wt%) as electrolyte. Real-time stress evolution in the germanium thin-film electrodes during electrochemical lithiation/delithiation is measured by monitoring the substrate curvature using the multi-beam optical sensing method. Upon lithiation a-Ge undergoes extensive plastic deformation, with a peak compressive stress reaching as high as -0.76 +/- 0.05 GPa (mean +/- standard deviation). The compressive stress decreases with lithium concentration reaching a value of approximately -0.3 GPa at the end of lithiation. Upon delithiation the stress quickly became tensile and follows a trend that mirrors the behavior on compressive side; the average peak tensile stress of the lithiated Ge samples was approximately 0.83 GPa. The peak tensile stress data along with the SEM analysis was used to estimate a lower bound fracture resistance of lithiated Ge, which is approximately 5.3 J/m(2). It was also observed that the lithiated Ge is rate sensitive, i.e., stress depends on how fast or slow the charging is carried out. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical capacitors are electrochemical devices with fast and highly reversible charge-storage and discharge capabilities. The devices are attractive for energy storage particularly in applications involving high-power requirements. Electrochemical capacitors employ two electrodes and an aqueous or a non-aqueous electrolyte, either in liquid or solid form; the latter provides the advantages of compactness, reliability, freedom from leakage of any liquid component and a large operating potential-window. One of the classes of solid electrolytes used in capacitors is polymer-based and they generally consist of dry solid-polymer electrolytes or gel-polymer electrolyte or composite-polymer electrolytes. Dry solid-polymer electrolytes suffer from poor ionic-conductivity values, between 10(-8) and 10(-7) S cm(-1) under ambient conditions, but are safer than gel-polymer electrolytes that exhibit high conductivity of ca. 10(-3) S cm(-1) under ambient conditions. The aforesaid polymer-based electrolytes have the advantages of a wide potential window of ca. 4 V and hence can provide high energy-density. Gel-polymer electrolytes are generally prepared using organic solvents that are environmentally malignant. Hence, replacement of organic solvents with water in gel-polymer electrolytes is desirable which also minimizes the device cost substantially. The water containing gel-polymer electrolytes, called hydrogel-polymer electrolytes, are, however, limited by a low operating potential-window of only about 1.23 V. This article reviews salient features of electrochemical capacitors employing hydrogel-polymer electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direct electrochemistry of cytochrome c (cyt-c) has been investigated on exfoliated graphite (EG) electrodes. The as-polished and roughened (using SiC emery sheet) EG surfaces are inactive for the direct electron transfer. However, when the EG electrode was sonicated before the experiment, a pair of redox waves were obtained for freely diffusing cyt-c in the solution phase. The formal potential was found to be 0.01 V (vs. SCE) in 0.1 M phosphate buffer at a pH of 7.1. The electrochemical response for the adsorbed cyt-c on sonicated EG electrodes, which is shown to have carbonyl functional groups on its surface, shows nearly reversible voltammograms in the same electrolyte. However, the formal potential in the adsorbed state is more negative than that observed for the solution phase cyt-c. A structure based on an open heme conformation proposed by Hildebrandt and Stockburger is probably present on the EG surface. It is suggested that the electrochemistry at the EG electrode is essentially governed by favourable electrostatic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodes made of purified and open single walled carbon nanotubes behave like metal hydride electrodes in Ni-MH batteries, showing high electrochemical reversible charging capacity up to 800 mAh g(-1) corresponding to a hydrogen storage capacity of 2.9 wt% compared to known AB(5), AB(2) metal hydride electrodes. (C) 2000 Elsevier Science Ltd. All rights reserved.