188 resultados para electrochemical corrosion

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Zn-CeO 2 composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate. As a comparison pure zinc coating was also prepared. The concentration of CeO 2 nanoparticles was varied in the electrolytic bath and the composites were electrodeposited both in the presence and absence of cetyltriammonium bromide (CTAB). The performance of the CeO 2 nanoparticles towards the deposition, crystal structure, texture, surface morphology and electrochemical corrosion behavior was studied. For characterizations of the electrodeposits, the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) were used. Both the additives ceria and surfactant polarize the reduction processes and thus influence the deposition process, surface nature and the electrochemical properties. The electrochemical experiments like potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies carried out in 3.5 wt. NaCl solution explicit higher corrosion resistance by CeO 2 incorporated coating in the presence of surfactant. © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary objective of the present work was to study the electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, fabricated independently in various electrolyte solutions consisting of anions such as phosphate (PO43-), borate (B4O72-), citrate (C6H5O73-) and silicate (SiO32-). Further the role of anions on the structural, morphological and compositional properties of the fabricated films was studied. All the titania films were developed by micro-arc oxidation (MAO) technique for a fixed treatment time of 8 min under constant current mode. The surface morphology, elemental distribution, composition and structural characteristics of the films were assessed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The thermodynamic and kinetic corrosion properties of the films were studied under simulated body fluid (SBF) conditions (pH 7.4 and 37 degrees C) by conducting chronopotentiometric and potentiodynamic polarization tests. Electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit modelling was carried out to analyse the frequency response and Mott-Schottky analysis was performed to study the semiconducting (electronic) properties of the films. Salt spray fog accelerated corrosion test was conducted for 168h as per ASTM B117 standard to corroborate the corrosion and semiconducting properties of the samples based on the visual examination. The XRD results showed that the transformation from the metastable anatase phase to the thermodynamically stable rutile phase and the crystalline growth of the respective phases were strongly influenced by the addition of anions. The SEM-EDS results demonstrated that the phosphorous (P) content in the films varied from 2.4 at% to 5.0 at% indicating that the amount of P in the films could be modified by adding an appropriate electrolyte additive. The electrochemical corrosion test results showed that the film fabricated in citrate (C6H5O73-) containing electrolyte is thermodynamically and kinetically more stable compared to that of all the others. The results of the Mott-Schottky analysis indicated that all the fabricated films showed an n-type semiconducting behaviour and the film developed in citrate (C6H5O73-) containing electrolyte exhibited the lowest donor concentration and the most negative flat band potential that contributed to its highest corrosion resistance in SBF solution. The results of the salt spray accelerated corrosion tests were in agreement with those obtained from the electrochemical and Mott-Schottky analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study is focussed at establishing an appropriate electrolyte system for developing electrochemically stable and fluorine (F) containing titania (F-TiO2) films on Cp Ti by micro-arc oxidation (MAO) technique. To fabricate the F-TiO2 films on Cp Ti, different electrolyte solutions of chosen concentrations of tri-sodium orthophosphate (TSOP, Na3PO4 center dot I2H2O), potassium hydroxide (KOH) and various F-containing compounds such as ammonium fluoride (NH4F), potassium fluoride (KF), sodium fluoride (NaF) and potassium fluorotitanate (K2TiF6) are employed. The structural and morphological characteristics, thickness and elemental composition of the developed films have been assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The in-vitro electrochemical corrosion behavior of the films was studied under Kokubo simulated body fluid (SBF) environment by potentiodynamic polarization, long term potential measurement and electrochemical impedance spectroscopy (EIS) methods. The XRD and SEM-EDS results show that the rutile content in the films vary in the range of 15-37 wt% and the F and P contents in the films is found to be in the range of 2-3 at% and 2.9-4.7 at% respectively, suggesting that the anatase to rutile phase transformation and the incorporation of F and P into the films are significantly controlled by the respective electrolyte solution. The SEM elemental mapping results show that the electrolyte borne F and P elements are incorporated and distributed uniformly in all the films. Among all the films under study, the film developed with 5 g TSOP+2 g KOH+3 g K2TiF6 electrolyte system exhibits considerably improved in-vitro corrosion resistance and therefore best suited for biomedical applications. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The inhibition effect of colchicine (CC) on mild steel (MS) corrosion in 1 M HCl solution has been investigated by electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometry and also by the gravimetric method. Polarization studies showed that CC acts as mixed type corrosion inhibitor. The inhibitor adsorption process in the MS/CC/HCl system was studied at different temperatures (303-333 K). The adsorption of CC on MS surface is an exothermic process and obeys the Langmuir adsorption isotherm. Based on potential of zero charge values and quantum chemical parameters, the mechanism of adsorption has been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) characteristics of agr-titanium sheets in a bromine-methanol solution have been studied in the annealed and cold-rolled conditions using longitudinal and transverse specimens. The times to failure for annealed longitudinal specimens were longer than those for similarly tested transverse specimens. The cold-rolled specimens developed resistance to SCC, but failed by cleavage when notched, unlike the intergranular separation in annealed titanium. The apparent activation energy was found to be texture dependent and was in the range 30 to 51 kJ mol–1 for annealed titanium, and 15kJ mol–1 for cold-rolled titanium. The dependence of SCC behaviour on the texture is related to the changes in the crack initiation times. These are caused by changes in the passivation and repassivation characteristics of the particular thickness plane. The thickness planes are identified with the help of X-ray pole figures obtained on annealed and cold-rolled material. On the basis of the activation energy and the electrochemical measurements, the mechanism of SCC in annealed titanium is identified to be the one involving stress-aided anodic dissolution. On the other hand, the results on the cold-rolled titanium are in support of the hydrogen embrittlement mechanism consisting of hydride precipitation. The cleavage planes identified from the texture data match with the reported habit planes for hydride formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doss and Agarwal 1 discovered the "redoxokinetic effect" which is now familiarly known as faradaic rectification. Subsequently, the theory and applications of faradaic rectification due to a single electrode reaction have been developed by several workers 2-5. The theory and application of faradaic rectification in the case of a corrosion cell sustaining mixed electrode reactions on a corroding metal was reported recently 6"7. This led to the development of a new electrochemical method of corrosion rate determination. It was shown that changes in the instantaneous corrosion rates of a metal are readily evaluated by faradaic rectification measurements at the corrosion potential of the metal in a given medium. The aim of the present work is to show that absolute values of instantaneous corrosion rates may also be obtained by the new method under certain conditions. The practical advantages that arise from this development are pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)(2)). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the 1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and morphological characteristics. The rate of anatase to rutile phase transformation and the rutile growth direction were strongly influenced by the abundant oxidizing species available during the film growth process. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A self assembled monolayer (SAM) of sodium oleate was generated on mild steel by the dip coating method. Formation of the SAM on mild steel was examined using Infrared Reflection Absorption Spectroscopy (IRRAS) and contact angle measurements. The chemical and anticorrosive properties of the SAM were analyzed using different techniques. IRRAS and water contact angle data revealed the crystallinity and chemical stability of the SAM modified mild steel. The electrochemical measurements showed that the mild steel with the sodium oleate derived SAM exhibited better corrosion resistance in saline water. The effect of temperature and pH on the SAM formation and its anti corrosion ability was explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn-Ag composite coatings. The Zn-Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, land 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanopartides, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn-Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn-Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stainless steels are among the most investigated materials on biofouling and microbially-influenced corrosion (MIC). Although, generally corrosion-resistant owing to tenacious and passive surface film due to chromium, stainless steels are susceptible to extensive biofouling in subsoil, fresh water and sea water and chemical process environments. Biofilms influence their corrosion behavior due to corrosion potential ennoblement and sub-surface pitting. Both aerobic and anaerobic microorganisms catalyse microbial corrosion of stainless steels through biotic and abiotic mechanisms. MIC of stainless steels is common adjacent to welds at the heat-affected zone. Both austenite and delta ferrite phases may be susceptible. Even super stainless steels are found to be amenable to biofouling and MIC. Microbiological, electrochemical as well as physicochemical aspects of MIC pertaining to stainless steels in different environments are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Zn-graphene composite coating was electrodeposited on mild steel. The graphene was synthesized by electrochemical exfoliation of graphite. Electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction techniques were used to characterize the coatings. Compared to a pure Zn coating, the Zn-graphene coating exhibited reduced grain size, reduced surface defects, hillock structures over the coating surface and an altered texture. The corrosion behavior of the coatings was examined by Tafel polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the Zn coating containing graphene.