5 resultados para electroanalysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Electrodeposition of Au on poly (3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable 3-D urchin-like morphology. Au-PEDOT/C electrode exhibits higher surface area, greater catalytic activity, higher sensitivity and lower detection limit for glucose analysis in an alkaline medium than Au/C electrode. Au-PEDOT/C electrode exhibits a linear current response in glucose concentration ranging up to 10 mu M with sensitivity of 515 mu A cm(-2) mu M-1 (on the basis of geometric area) and a low detection limit of 0.03 mu M with signal to noise ratio of 3. Thus, the PEDOT under-layer improves the property of Au for glucose analysis. (c) 2013 The Electrochemical Society.
Resumo:
The direct electrochemistry of cytochrome c (cyt-c) has been investigated on exfoliated graphite (EG) electrodes. The as-polished and roughened (using SiC emery sheet) EG surfaces are inactive for the direct electron transfer. However, when the EG electrode was sonicated before the experiment, a pair of redox waves were obtained for freely diffusing cyt-c in the solution phase. The formal potential was found to be 0.01 V (vs. SCE) in 0.1 M phosphate buffer at a pH of 7.1. The electrochemical response for the adsorbed cyt-c on sonicated EG electrodes, which is shown to have carbonyl functional groups on its surface, shows nearly reversible voltammograms in the same electrolyte. However, the formal potential in the adsorbed state is more negative than that observed for the solution phase cyt-c. A structure based on an open heme conformation proposed by Hildebrandt and Stockburger is probably present on the EG surface. It is suggested that the electrochemistry at the EG electrode is essentially governed by favourable electrostatic interactions.
Resumo:
In the present work a gold modified pencil graphite electrode (GPGE) was used for the determination of L-dopa present in the aqueous extracts of Mucuna pruriens seeds (MPS), Mucuna pruriens leaves (MPL) and Commercial Siddha Product (CSP). The GPGE shows excellent electrocatalytic activity towards the oxidation of both L-dopa and ascorbic acid (AA), with the separation of peak potential of 98 mV. The differential pulse voltammetric (DPV) results indicated that the detection limit for L-dopa was 1.54 mu M (S/N=3). This method can be successfully applied for the determination of L-dopa in real samples.
Resumo:
ZnO nanoparticles (ZnO NPs) prepared by microwave heating technique are used to modify a gold electrode (ZnO/Au) for the hydrazine detection study. The synthesized product is well characterized by various techniques. Detailed electrochemical investigation of the oxidation of hydrazine on the ZnO/Au electrode in 0.02 M phosphate buffer solution (PBS) of pH 7.4 was carried out. A very low detection limit of 66 nM (S/N=4) and a wide linearity in current for a concentration range from 66.0X10-3 to 415 mu M was achieved by amperometry. The electrode was found to be stable for over a month when preserved in PBS.
Resumo:
A MoS2-RGO composite and borocarbonitride (BC5N) have been used as electrodes to selectively detect dopamine and uric acid in the presence of ascorbic acid. Both the electrodes show excellent eletrocatalytic activity towards the detection of dopamine, the detection limits being 0.55 mu M and 2.1 mu M in the case of MoS2-RGO and BCN respectively. MoS2-RGO shows a linear range of current over the 1-110 mu M concentrations of dopamine, while BCN shows over the 2.3-20 mu M range. BCN also exhibits satisfactory performance in the oxidation of uric acid with a detection limit of 3.8 mu M and the linear range from 4 to 40 mu M. The MoS2-RGO has also been used to detect adenine as well.