138 resultados para electrical conductivity of poly(p-phenylene sulfide)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(o-toluidine) (POT) and poly(m-toluidine) (PMT) blends with polyvinylchloride (PVC) of five different compositions have been prepared by solution blending. The POT-PVC and PMT-PVC blends were prepared using THF as a solvent in which POT-HNO3, PMT-HNO3 bases and PVC are soluble. The blends have been characterized by spectral, thermal and electrical measurements. The results indicate the formation of blends at all the compositions presently studied. The thermal stability of the POT-PVC and PMT-PVC blends is higher than that of POT-HNO3 and PMT-HNO3 salts, respectively. Using the present method, POT/PMT can conveniently be blended with 30% wt/wt of PVC without significant loss in its conductivity. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the electrical conductivity between 2 and 300 K for LaNi1-xFexO3 across the composition-controlled metal-insulator (m-i) transition. Using a method first suggested by Mobius, we identify the critical concentration x(c) to be 0.3 for the m-i transition. The negative temperature coefficient of resistivity observed at low temperatures in the metallic phase follows a temperature dependence characteristic of disorder effects. The semiconducting compositions (x greater than or equal to 0.3) do not show a simple activation energy but exhibit variable-range hopping at high temperatures confirming that the m-i transition in this system is driven by increasing disorder effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation of electrical resistivity of an insulator-conductor composite, namely, wax-graphite composite, with parameters such as volume fraction, grain size, and temperature has been studied. A model is proposed to explain the observed variations, which assumes that the texture of the composite consists of insulator granules coated with conducting particles. The resistivity of these materials is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of resistivity with temperature has also been explained with the help of this model and it is attributed to the change in contact area. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A.C. electrical conductivity of potassium perchlorate (KP) has been measured in the temperature range 25�325°C at frequencies ranging from 50�500 Hz using an automated technique. The results are interpreted in terms of a novel mechanism involving Schottky defects in the anion sublattice and Frenkel defects in the cation sublattice. Theconductivity behavior of KP is compared with literature data on similar low-symmetry systems containing polyatomic ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dc electrical conductivity of TlInX2 (X = Se, Te) single crystals, parallel and perpendicular to the (001) c-axis is studied under high quasi-hydrostatic pressure up to 7.0 GPa, at room temperature. Conductivity measurements parallel to the c-axis are carried out at high pressures and down to liquid nitrogen temperatures. These materials show continuous metallization under pressure. Both compounds have almost the same pressure coefficient of the electrical activation energy parallel to the c-axis, d(ΔE∥)/dP = −2.9 × 10−10 eV/Pa, which results from the narrowing of the band gap under pressure. The results are discussed in the light of the band structure of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1-xCoxO3 for 0 less than or equal to x less than or equal to 0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log sigmaT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Symmetrized DMRG calculations on long oligomers of poly- para-phenylene (PPP) and poly-para-phenylene vinylene (PPV) systems within a `U-V' model have been carried out to obtain the one-photon, two-photon and singlet-triplet gaps in these systems. The extrapolated gaps (in eV) are 2.89, 3.76 and 2.72 in PPP and 3.01, 3.61 and 2.23 in PPV for the one- photon, two-photon and spin gaps respectively. By studying doped systems, we have obtained the exciton binding energies. The larger exciton binding energies, compared to strongly dimerized linear chains emphasizes the role of topology in these polymers. Bond orders, charge and spin correlations in the low-lying states bring out the similarities between the lowest one-photon, the lowest triplet and the lowest bipolaronic states in these systems. The two-photon state bond orders show evidence for strong localization of this excitation in both PPP and PPV systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline tin oxide (SnO2) material of different particle size was synthesized using gel combustion method by varying oxidizer (HNO3) and keeping fuel as a constant. The prepared samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscope (EDAX). The effect of oxidizer in the gel combustion method was investigated by inspecting the particle size of nano SnO2 powder. The particle size was found to be increases with the increase of oxidizer from 8 to 12 moles. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the particle size in the range of 17 to 31 nm which was calculated by Scherer's formula. The particles and temperature dependence of direct (DC) electrical conductivity of SnO2 nanomaterial was studied using Keithley source meter. The DC electrical conductivity of SnO2 nanomaterial increases with the temperature from 80 to 300K and decrease with the particle size at constant temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here a multiple-nitrile based lithium-salt liquid electrolyte. The ionic conductivity of poly (propyl ether imine) (abbreviated as PETIM) lithium salt dendrimer liquid electrolyte was observed to be a function of dendrimer generation number, n=0 (monomer)-3. While the highest room temperature ionic conductivity value (similar to 10(-1) Sm-1) was recorded for the bis-2cyanoethyl ether monomer (i.e. zeroth generation; G(0)-CN), conductivity decreased progressively to lower values (similar to 10(-3) Sm-1) with increase in generation number (G(1)-CN -> G(3)-CN). The G(0)-CN and higher dendrimer generations showed high thermal stability (approximate to 150 to 200 degrees C), low moisture sensitivity and tunable viscosity (similar to 10(-2) (G(0)-CN) to 3 (G(3)-CN) Pa s). The linker ether group was found to be crucial for ion transport and also eliminated a large number of detrimental features, chiefly moisture sensitivity, chemical instability associated typically with prevalent molecular liquid solvents. Based on the combination of several beneficial physicochemical properties, we presently envisage that the PETIM dendrimers especially the G(0)-CN electrolytes hold promise as electrolytes in electrochemical devices such as lithium-ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

D.C. electrical conductivity of polyaniline (33%,40%) blended with PMMA was measured from 5K to 300mK. The conductivity behaviour is consistent with fluctuation induced tunneling. Magneto-resistance (MR) was measured between 300K and 2K. From 20K to 2K, a large positive MR was observed. At 2K, for low magnetic fields (<1 Tesla), a deviation from the normal H-2 behaviour was observed.