221 resultados para elastic-perfectly plastic

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, two families of asymptotic near-tip stress fields are constructed in an elastic-ideally plastic FCC single crystal under mode I plane strain conditions. A crack is taken to lie on the (010) plane and its front is aligned along the [(1) over bar 01] direction. Finite element analysis is first used to systematically examine the stress distributions corresponding to different constraint levels. The general framework developed by Rice (Mech Mater 6:317-335, 1987) and Drugan (J Mech Phys Solids 49:2155-2176, 2001) is then adopted to generate low triaxiality solutions by introducing an elastic sector near the crack tip. The two families of stress fields are parameterized by the normalized opening stress (tau(A)(22)/tau(o)) prevailing in the plastic sector in front of the tip and by the coordinates of a point where elastic unloading commences in stress space. It is found that the angular stress variations obtained from the analytical solutions show good agreement with finite element analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation into the effect of microstructural changes, which occur during post-extrusion annealing of a Mg based AZ21 alloy, on tensile and fatigue properties is conducted. Mechanical properties in the as-cast, as-extruded, and microstructural states that correspond to recovery, recrystallization and grain growth stages of annealing are compared. Results show that these microstructural changes do not alter the yield strength of the alloy markedly whereas significant differences were noted in the ultimate tensile strength as well as ductility. The initiation of abnormal grain growth (or secondary recrystallization) renders the tensile stress-strain response elastic perfectly plastic and results in a large drop in ductility, as high as similar to 60% during intermediate stages of abnormal grain growth, vis-A-vis the ductility of the as-extruded alloy. While the fatigue performance of all the wrought alloys is far superior to as expected, abnormal grain growth leads to a marked decrease in the endurance that of the as-cast alloy, limit. Possible microscopic origins of these are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of modelling the transient response of an elastic-perfectly-plastic cantilever beam, carrying an impulsively loaded tip mass, is,often referred to as the Parkes cantilever problem 25]; The permanent deformation of a cantilever struck transversely at its tip, Proc. R. Soc. A., 288, pp. 462). This paradigm for classical modelling of projectile impact on structures is re-visited and updated using the mesh-free method, smoothed particle hydrodynamics (SPH). The purpose of this study is to investigate further the behaviour of cantilever beams subjected to projectile impact at its tip, by considering especially physically real effects such as plastic shearing close to the projectile, shear deformation, and the variation of the shear strain along the length and across the thickness of the beam. Finally, going beyond macroscopic structural plasticity, a strategy to incorporate physical discontinuity (due to crack formation) in SPH discretization is discussed and explored in the context of tip-severance of the cantilever beam. Consequently, the proposed scheme illustrates the potency for a more refined treatment of penetration mechanics, paramount in the exploration of structural response under ballistic loading. The objective is to contribute to formulating a computational modelling framework within which transient dynamic plasticity and even penetration/failure phenomena for a range of materials, structures and impact conditions can be explored ab initio, this being essential for arriving at suitable tools for the design of armour systems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to understand the influence of ductile metal interlayer on the overall deformation behavior of metal/nitride multilayer, different configurations of metal and nitride layers were deposited and tested under indentation loading. To provide insight into the trends in deformation with multilayer spacings, an FEM model with elastic-perfect plastic metal layers alternate with an elastic nitride on top of an elastic-plastic substrate. The strong strain mismatch between the metal and nitride layers significantly alters the stress field under contact loading leading to micro-cracking in the nitride, large tensile stresses immediately below the contact, and a transition from columnar sliding in thin metal films to a more uniform bending and microcracking in thicker coatings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761944]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0 <= x <= 9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2 <= x <= 6. It is also seen that the addition of up to 2 at% Si increases the density rho of the glass considerably; however, further additions of Si lead to a near linear reduction in rho, in the range 2 <= x <= 6. Beyond x=6, rho increases again with Si content. The variation of molar volume V-m brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2 <= x <= 6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e. g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, an overview of some recent numerical simulations of stationary crack tip fields in elastic-plastic solids is presented. First, asymptotic analyses carried out within the framework of 2D plane strain or plane stress conditions in both pressure insensitive and pressure sensitive plastic solids are reviewed. This is followed by discussion of salient results obtained from recent computational studies. These pertain to 3D characteristics of elastic-plastic near-front fields under mixed mode loading, mechanics of fracture and simulation of near-tip shear banding process of amorphous alloys and influence of crack tip constraint on the structure of near-tip fields in ductile single crystals. These results serve to illustrate several important features associated with stress and strain distributions near the crack tip and provide the foundation for understanding the operative failure mechanisms. The paper concludes by highlighting some of the future prospects for this field of study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A block of high-purity copper was indented by a 120-degrees diamond-tipped cone. Strain gauges were placed on the surface to measure the radial strains at different surface locations, during loading as well as unloading. The competence of three stress fields proposed for elastic-plastic indentation is assessed by comparing the predicted surface radial strains with those experimentally observed.