273 resultados para dynamic mesh

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of modelling the transient response of an elastic-perfectly-plastic cantilever beam, carrying an impulsively loaded tip mass, is,often referred to as the Parkes cantilever problem 25]; The permanent deformation of a cantilever struck transversely at its tip, Proc. R. Soc. A., 288, pp. 462). This paradigm for classical modelling of projectile impact on structures is re-visited and updated using the mesh-free method, smoothed particle hydrodynamics (SPH). The purpose of this study is to investigate further the behaviour of cantilever beams subjected to projectile impact at its tip, by considering especially physically real effects such as plastic shearing close to the projectile, shear deformation, and the variation of the shear strain along the length and across the thickness of the beam. Finally, going beyond macroscopic structural plasticity, a strategy to incorporate physical discontinuity (due to crack formation) in SPH discretization is discussed and explored in the context of tip-severance of the cantilever beam. Consequently, the proposed scheme illustrates the potency for a more refined treatment of penetration mechanics, paramount in the exploration of structural response under ballistic loading. The objective is to contribute to formulating a computational modelling framework within which transient dynamic plasticity and even penetration/failure phenomena for a range of materials, structures and impact conditions can be explored ab initio, this being essential for arriving at suitable tools for the design of armour systems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IEEE 802.16 standards for Wireless Metropolitan Area Networks (WMANs) include a mesh mode of operation for improving the coverage and throughput of the network. In this paper, we consider the problem of routing and centralized scheduling for such networks. We first fix the routing, which reduces the network to a tree. We then present a finite horizon dynamic programming framework. Using it we obtain various scheduling algorithms depending upon the cost function. Next we consider simpler suboptimal algorithms and compare their performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An arbitrary Lagrangian-Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier-Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surface tension and surfactant-dependent dynamic contact angle. In particular, the dynamic contact angle (theta(d)) of the droplet is defined as a function of the surfactant concentration at the contact line and the equilibrium contact angle (theta(0)(e)) of the clean surface using the nonlinear equation of state for surface tension. Further, the surface forces are included into the model as surface divergence of the surface stress tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the surfactant concentration on the free surface. In addition to a mesh convergence study and validation of the numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed that the effects of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the presence of surfactants at the contact line reduces the equilibrium contact angle further when theta(0)(e) is less than 90 degrees, and increases it further when theta(0)(e) is greater than 90 degrees. Nevertheless, the presence of surfactants has no effect on the contact angle when theta(0)(e) = 90 degrees. The numerical study clearly demonstrates that the surfactant-dependent contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium states of surfactant droplet impingement accurately. The proposed numerical scheme guarantees the conservation of fluid mass and of the surfactant mass accurately. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although LH is essential for survival and function of the corpus luteum (CL) in higher primates, luteolysis occurs during nonfertile cycles without a discernible decrease in circulating LH levels. Using genome-wide expression analysis, several experiments were performed to examine the processes of luteolysis and rescue of luteal function in monkeys. Induced luteolysis with GnRH receptor antagonist (Cetrorelix) resulted in differential regulation of 3949 genes, whereas replacement with exogenous LH (Cetrorelix plus LH) led to regulation of 4434 genes (1563 down-regulation and 2871 up-regulation). A model system for prostaglandin (PG) F-2 alpha-induced luteolysis in the monkey was standardized and demonstrated that PGF(2 alpha) regulated expression of 2290 genes in the CL. Analysis of the LH-regulated luteal transcriptome revealed that 120 genes were regulated in an antagonistic fashion by PGF(2 alpha). Based on the microarray data, 25 genes were selected for validation by real-time RT-PCR analysis, and expression of these genes was also examined in the CL throughout the luteal phase and from monkeys treated with human chorionic gonadotropin (hCG) to mimic early pregnancy. The results indicated changes in expression of genes favorable to PGF(2 alpha) action during the late to very late luteal phase, and expressions of many of these genes were regulated in an opposite manner by exogenous hCG treatment. Collectively, the findings suggest that curtailment of expression of downstream LH-target genes possibly through PGF(2 alpha) action on the CL is among the mechanisms underlying cross talk between the luteotropic and luteolytic signaling pathways that result in the cessation of luteal function, but hCG is likely to abrogate the PGF(2 alpha)-responsive gene expression changes resulting in luteal rescue crucial for the maintenance of early pregnancy. (Endocrinology 150: 1473-1484, 2009)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the multitude of test specimen geometries used for dynamic fiacture toughness evaluation, the most widely uscd specimen is lhc Chavpy specimen due its simple geomclry and availability of testing machines. The standard Chatpy specimen dimensions may llOl always give plane st~ain condilions and hence, it may be necessary Io coilduct lcs/s using specimens of dillEvcnt thicknesses to establish the plane strain K~a. An axisymmct/ic specimen, on the otlaev hand would always give flow constraints l~n a nominal specimen thickness i~rcspcctive of the test matctial. The notched disk specimen pVOl)oscd by Bcrn:ud ctal. [1] for static and dynamic initiation toughness measurement although p~ovicles plain-strain conditions, the crack plopagatcs at an angle to the direction of applied load. This makes inteq~retation of the test results difficult us it ~Ccluivcs ~actial slices to be cut fiom the fractured specimen to ascertain the angle o1 crack growth and a linite element model l~)r tl);t{ pa~ticulat ctack o~icntalion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation into the dynamic strain ageing (DSA) of a wrought Ni-base superalloy 720Li was conducted. Characteristics of jerky, flow have been studied at intermediate temperatures of 350, 400 and 450 degrees C at strain-rates between 10(-3) and 10(-5) s(-1). Serrations of Type C are predominant within the temperature/strain-rate range explored. The major characteristics of the serrations-i.e. (a) critical plastic strain for onset of serrations, epsilon(c); (b) average stress decrement, Delta sigma(avg); and (c) strain increment between serrations. Delta epsilon(BS)-have been examined at selected temperatures and strain-rates. Negative strain-rate sensitivity was observed in the DSA regime. However. temperature did not influence tensile properties such as yield strength, ultimate strength. elongation, reduction in area, and work hardening rate or fracture features in DSA regime. Analysis of the results Suggests that locking of the mobile dislocations by substitutional alloying elements is responsible for the DSA in alloy 720Li.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for dynamic analysis of short term small signal voltage instability in a multi-machine power system. The formulation of the problem is done by decoupling the angle instability from the voltage instability. The method is based on the incremental reactive current flow network (IRCFN), where the incremental reactive current injection at each bus is related to the incremental voltage magnitude at all the buses. Small signal stability using the eigenvalue analysis is illustrated utilizing a single-machine load bus (SMLB) and three-machine system examples. The role of a static var compensator (SVC) at the load bus is also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the modeling and analysis of a voltage source converter (VSC) based back-to-back (BTB) HVDC link. The case study considers the response to changes in the active and reactive power and disturbance caused by single line to ground (SLG) fault. The controllers at each terminal are designed to inject a variable (magnitude and phase angle) sinusoidal, balanced set of voltages to regulate/control the active and reactive power. It is also possible to regulate the converter bus (AC) voltage by controlling the injected reactive power. The analysis is carried out using both d-q model (neglecting the harmonics in the output voltages of VSC) and three phase detailed model of VSC. While the eigenvalue analysis and controller design is based on the d-q model, the transient simulation considers both models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.