8 resultados para duffing
em Indian Institute of Science - Bangalore - Índia
Resumo:
This article develops a simple analytical expression that relates ion axial secular frequency to field aberration in ion trap mass spectrometers. Hexapole and octopole aberrations have been considered in the present computations. The equation of motion of the ions in a pseudopotential well with these superpositions has the form of a Duffing-like equation and a perturbation method has been used to obtain the expression for ion secular frequency as a function of field imperfections. The expression indicates that the frequency shift is sensitive to the sign of the octopole superposition and insensitive to the sign of the hexapole superposition. Further, for weak multipole superposition of the same magnitude, octopole superposition causes a larger frequency shift in comparison to hexapole superposition.
Resumo:
State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy measurements, are considered using Monte Carlo simulations. Given the measurements. the proposed method obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the state vector using a particle filter. Samples (particles) of the marginalized states are then used to construct a family of conditionally linearized system of equations and thus obtain the posterior distribution of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are derived through truncated Ito-Taylor expansions. Increased analyticity and reduced dispersion of weights computed over a smaller sample space of marginalized states are the key features of the filter that help achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter estimation is also assessed using measurements obtained through experiments on simple models in the laboratory. Despite an added computational cost, the results verify that the proposed filter generally produces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.
Resumo:
A method is presented for obtaining, approximately, the response covariance and probability distribution of a non-linear oscillator under a Gaussian excitation. The method has similarities with the hierarchy closure and the equivalent linearization approaches, but is different. A Gaussianization technique is used to arrive at the output autocorrelation and the input-output cross-correlation. This along with an energy equivalence criterion is used to estimate the response distribution function. The method is applicable in both the transient and steady state response analysis under either stationary or non-stationary excitations. Good comparison has been observed between the predicted and the exact steady state probability distribution of a Duffing oscillator under a white noise input.
Resumo:
A new form of a multi-step transversal linearization (MTL) method is developed and numerically explored in this study for a numeric-analytical integration of non-linear dynamical systems under deterministic excitations. As with other transversal linearization methods, the present version also requires that the linearized solution manifold transversally intersects the non-linear solution manifold at a chosen set of points or cross-section in the state space. However, a major point of departure of the present method is that it has the flexibility of treating non-linear damping and stiffness terms of the original system as damping and stiffness terms in the transversally linearized system, even though these linearized terms become explicit functions of time. From this perspective, the present development is closely related to the popular practice of tangent-space linearization adopted in finite element (FE) based solutions of non-linear problems in structural dynamics. The only difference is that the MTL method would require construction of transversal system matrices in lieu of the tangent system matrices needed within an FE framework. The resulting time-varying linearized system matrix is then treated as a Lie element using Magnus’ characterization [W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., VII (1954) 649–673] and the associated fundamental solution matrix (FSM) is obtained through repeated Lie-bracket operations (or nested commutators). An advantage of this approach is that the underlying exponential transformation could preserve certain intrinsic structural properties of the solution of the non-linear problem. Yet another advantage of the transversal linearization lies in the non-unique representation of the linearized vector field – an aspect that has been specifically exploited in this study to enhance the spectral stability of the proposed family of methods and thus contain the temporal propagation of local errors. A simple analysis of the formal orders of accuracy is provided within a finite dimensional framework. Only a limited numerical exploration of the method is presently provided for a couple of popularly known non-linear oscillators, viz. a hardening Duffing oscillator, which has a non-linear stiffness term, and the van der Pol oscillator, which is self-excited and has a non-linear damping term.
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.
Resumo:
Sessile droplets on a vibrating substrate are investigated focusing on axisymmetric oscillations with pinned contact line. Proper orthogonal decomposition is employed to identify the different modes of droplet shape oscillation and quantitatively assess the droplet oscillation and spectral response. We offer the first experimental evidence for the analogy of an oscillating sessile droplet with a non-linear spring mass damper system. The qualitative and quantitative agreement of amplitude response and phase response curves and limit cycles of the model dynamical system with that observed experimentally suggest that the bulk oscillations in the fundamental mode of a sessile droplet can be very well modeled by a Duffing oscillator with a hard spring, especially near the resonance. The red shift of the resonance peak with an increase in the glycerol concentration is clearly evidenced by both the experimental and predicted amplitude response curves. The influence of various operational parameters such as excitation frequency and amplitude and fluid properties on the droplet oscillation characteristics is adequately captured by the model. (C) 2014 Elsevier Ltd. All rights reserved.