12 resultados para drugs in school

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate experimental determination of the solubilities of antibiotics and anti-inflammatory drugs in supercritical fluids (SCFs) and correlations are essential for the development of supercritical technologies for the pharmaceuticals industry. In this work, the solubilities of penicillinG, penicillinV, flurbiprofen, ketoprofen, naproxen, ibuprofen, aspirin and diflunisal in supercritical carbon dioxide (SCCO2) were correlated using Peng-Robinson equation of state (PR EOS) with the modified Kwak and Mansoori mixing rules (mKM) and with Bartle model. The ability of mKM rules was compared against the conventional mixing rules of van der Waals in correlating the solubilities. In the present model, vapor pressure was considered as an adjustable parameter along with binary interactions parameters. In the proposed model, the constants used in the mixing rule, and vapor pressure expression coefficients are temperature independent. The optimization of these constants with experimental data gives binary interaction parameters along with vapor pressure correlations. Sublimation enthalpies were estimated with both the models compared with literature reported experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Antipsychotic drugs date back to the 1950s and chlorpromazine. Soon after, it was established that blockade of dopamine and, in particular, the D-2 receptor was central to this effect. Dopamine continues to represent a critical line of investigation, although much of the work now focuses on its potential in other symptom domains. Areas covered: A search was carried out for investigational drugs using the key words `dopamine', `schizophrenia' and `Phase III' in an American clinical trial registry (clinicaltrials.gov), published articles using the National Library of Medicine's PubMed database, and supplemented results with a manual search of cross-references and conference abstracts. Drugs were excluded that were already FDA approved. Expert opinion: There remains interest, albeit diminished, in developing better antipsychotic compounds. The greatest enthusiasm currently centres on dopamine's role in negative and cognitive symptom domains. With theories conceptualising hypodopaminergic activity as underlying these deficits, considerable effort is focused on drug strategies that will enhance dopamine activity. Finally, a small body of research is investigating dopaminergic compounds vis-a-vis side-effect treatments. In domains beyond psychosis, however, dopamine arguably is not seen as so central, reflected in considerable research following other lines of investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A pre-requisite for the elucidation of the mechanism of action of aspirin-like drugs, which are believed to exert their pharmacological effects through the inhibition of prostaglandin biosynthesis, is an understanding of their molecular geometry, the non-covalent interactions they are likely to be involved in, and the geometrical and the electronic consequences of such interactions. This has been sought to be achieved through the x-ray analysis of these drug molecules and their crystalline complexes with other suitable molecules. The results obtained from such studies have been discussed in terms of specific typical examples. For instance, antipyrine can form metal and hydrogen-bonded complexes; phenylbutazone can form ionic complexes with basic molecules. Complex formation is accompanied by characteristic changes in the molecular geometry and the electronic structure in both the cases. The results obtained so far appear to indicate that the important common invariant structural features of the fenamates, deduced from crystal structures, are retained even when complexation takes place.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of phenobarbital on the rates of the synthesis of the protein and heme moieties of cytochrome P-450 has been studied. For this purpose, cytochrome P-450 has been partially purified as its P-420 derivative and the labeled amino acid incorporation into the protein has been studied after subjecting a partially purified preparation to sodium dodecyl sulfate gel electrophoresis. The incorporation studies into the protein species after sodium dodecyl sulfate gel electrophoresis reveal that the drug primarily accelerates the rate of apoprotein synthesis followed by an increase in the rate of heme synthesis. The messenger for apocytochrome P-450 appears to be fairly stable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly (methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO3 particles followed by core removal with ethylene-diaminetetraacetic add (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel composite graphene oxide (GO)/poly(allylamine hydrochloride) (PAH) multilayer capsules have been fabricated by layer-by-layer (LbL) assembly. They were found to possess unique permeability properties compared to traditional LbL capsules. These hybrid capsules showed special ``core-shell'' loading property for encapsulation of dual drugs simultaneously into the core and shell of the capsules respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thiourea-based antithyroid drugs are effectively used for the treatment of hyperthyroidism. In this paper, we describe the synthesis of new trisulfides (11-12) from the commonly used thiourea-based antithyroid drugs such as 6-n-propyl-2-thiouracil (PTU) and 6-methyl-2-thiouracil (MTU) in the reaction with I-2/KI system. Structural analysis by single crystal X-ray diffraction studies revealed the stabilization of trisulfides by a lactam-lactim tautomerism facilitating effective intramolecular as well as intermolecular non-covalent interactions. Although the structures of both trisulfides were found to be quite similar, a notable difference in the intermolecular interactions was observed between compounds 11 and 12 leading to different structural patterns. Structural stabilization of these trisulfides by tautomerism followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel composite cyclodextrin (CD)-CaCO3 spherical porous microparticles have been synthesized through Ca2+-CD complex formation, which influences the crystal growth of CaCO3. The CDs are entrapped and distributed uniformly in the matrix of CaCO3 microparticles during crystallization. The hydrophobic fluorescent molecules coumarin and Nile red (NR) are efficiently encapsulated into these composite CD-CaCO3 porous particles through supramolecular inclusion complexation between entrapped CDs and hydrophobic molecules. Thermogravimetric (TGA) and infrared spectroscopy (IR) analysis of composite CD-CaCO3 particles reveals the presence of large CDs and their strong interaction with calcium carbonate nanoparticles. The resulting composite CD-CaCO3 microparticles are utilized as sacrificial templates for preparation of CD-modified layer-by-layer (LbL) capsules. After dissolution of the carbonate core, CDs are retained in the interior of the capsules in a network fashion and assist in the encapsulation of hydrophobic molecules. The efficient encapsulation of the hydrophobic fluorescent dye, coumarin, was successfully demonstrated using CD-modified capsules. In vitro release of the encapsulated coumarin from the CD-CaCO3 and CD-modified capsules has been demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iodination of tris(trimethylsilyl)methanethiol (trisylthiol, TsiSH) in tetrahydrofuran provides the new thermally stable alkanesulfenyl iodide iodo(trisyl)sulfane, TsiSI] as a violet solid. Iodo(trisyl)sulfane exhibits iodine-iodine contacts between pairs of TsiSI molecules in the solid state. Properties of TsiSI were studied by vibrational spectroscopy and with the help of density functional calculations. TsiSI reacts in the presence of triethylamine with the antithyroid drugs 6-n-propyl- and 6-methylthiouracil (PTU, MTU) and with N-methylmethimazole (MMI) to form unsymmetric disulfides that were investigated by means of X-ray crystallography. In the solid state, the PTU and MTU derivatives exist as hydrogen-bonded centrosymmetric dimers, whereas the MMI-derived disulfide is an unsymmetric monomer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drug repurposing to explore target space has been gaining pace over the past decade with the upsurge in the use of systematic approaches for computational drug discovery. Such a cost and time-saving approach gains immense importance for pathogens of special interest, such as Mycobacterium tuberculosis H37Rv. We report a comprehensive approach to repurpose drugs, based on the exploration of evolutionary relationships inferred from the comparative sequence and structural analyses between targets of FDA-approved drugs and the proteins of M. tuberculosis. This approach has facilitated the identification of several polypharmacological drugs that could potentially target unexploited M. tuberculosis proteins. A total of 130 FDA-approved drugs, originally intended against other diseases, could be repurposed against 78 potential targets in M. tuberculosis. Additionally, we have also made an attempt to augment the chemical space by recognizing compounds structurally similar to FDA-approved drugs. For three of the attractive cases we have investigated the probable binding modes of the drugs in their corresponding M. tuberculosis targets by means of structural modelling. Such prospective targets and small molecules could be prioritized for experimental endeavours, and could significantly influence drug-discovery and drug-development programmes for tuberculosis.