13 resultados para driving simulator
em Indian Institute of Science - Bangalore - Índia
Resumo:
Grid-connected systems when put to use at the site would experience scenarios like voltage sag, voltage swell, frequency deviations and unbalance which are common in the real world grid. When these systems are tested at laboratory, these scenarios do not exist and an almost stiff voltage source is what is usually seen. But, to qualify the grid-connected systems to operate at the site, it becomes essential to test them under the grid conditions mentioned earlier. The grid simulator is a hardware that can be programmed to generate some of the typical conditions experienced by the grid-connected systems at site. It is an inverter that is controlled to act like a voltage source in series with a grid impedance. The series grid impedance is emulated virtually within the inverter control rather than through physical components, thus avoiding the losses and the need for bulky reactive components. This paper describes the design of a grid simulator. Control implementation issues are highlighted in the experimental results.
Resumo:
Hamiltonian constructed in a first principles manner, we explored the origin of magnetism and the T-c trend in Cr-based double perovskite series, Sr2CrB'O-6 (B' = W/Re/Os). Our study shows that the apparently puzzling T-c trend in Sr2CrB'O-6 (B' = W/Re/Os) series can be understood in terms of the interplay of the hybridization driven mechanism and the superexchange mechanism.
Resumo:
Nuclear electro-magnetic pulse (NEMP) simulators which are used in the simulation of transient electromagnetic fields due to a high altitude nuclear detonation are generally excited with a double exponential high voltage pulse. This results in a current distribution on the wires of the simulator and hence a transient electric field in the working volume of the simulator where the test object is kept. It is found that for the simulator under study, the current distribution is non-uniform and so is the field distribution along the width of the simulator in the working volume. To make the current distribution uniform, several methods have been suggested and the results of these methods are analyzed and suitable conclusions are arrived at from those results.
Resumo:
The effect of variation in the switching instant of the output switch of the pulser circuit used in energizing an NEMP simulator on the voltage fed to the simulator and hence the electric field within the working volume of the simulator has been studied. Depending upon the instant at which the output switch closes, the amplitude and the wave shape of the voltage that is fed to the illuminator varies. This wave shape of the output voltage from the pulser circuit determines the shape and characteristics of the electric field within the working volume of the simulator. To study the effect of variation in the switching instant on the vertical electric field within the working volume, the vertical electric field has been computed in time and frequency domains. For certain switching instants, the electric field shows a sharp reduction in its amplitude after the peak which is called the notch. The presence of notch results in the test object not getting illuminated with all the frequencies of interest. The notch has been successfully reduced by suitably modifying the pulser circuit.
Resumo:
Analytical solution is presented to convert a given driving-point impedance function (in s-domain) into a physically realisable ladder network with inductive coupling between any two sections and losses considered. The number of sections in the ladder network can vary, but its topology is assumed fixed. A study of the coefficients of the numerator and denominator polynomials of the driving-point impedance function of the ladder network, for increasing number of sections, led to the identification of certain coefficients, which exhibit very special properties. Generalised expressions for these specific coefficients have also been derived. Exploiting their properties, it is demonstrated that the synthesis method essentially turns out to be an exercise of solving a set of linear, simultaneous, algebraic equations, whose solution directly yields the ladder network elements. The proposed solution is novel, simple and guarantees a unique network. Presently, the formulation can synthesise a unique ladder network up to six sections.
Resumo:
The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. Phys. Rev. A 72 (2005) 012331]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits, respectively after the unitary evolution of the XY Hamiltonian.
Resumo:
We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed, and the system is subjected to periodic delta-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.
Resumo:
Grid simulators are used to test the control performance of grid-connected inverters under a wide range of grid disturbance conditions. In the present work, a three phase back-to-back connected inverter sharing a common dc bus has been programmed as a grid simulator. Three phase balanced disturbance voltages applied to three-phase balanced loads has been considered in the present work. The developed grid simulator can generate three phase balanced voltage sags, voltage swells, frequency deviations and phase jumps. The grid simulator uses a novel disturbance generation algorithm. The algorithm allows the user to reference the disturbance to any of the three phases at any desired phase angle. Further, the exit of the disturbance condition can be referenced to the desired phase angle of any phase by adjusting the duration of the disturbance. The grid simulator hardware has been tested with different loads – a linear purely resistive load, a non-linear diode-bridge load and a grid-connected inverter load.
Resumo:
Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.