93 resultados para driven harmonic oscillator classical dynamics

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from a microscopic theory, we derive a master equation for a harmonic oscillator coupled to a bath of noninteracting oscillators. We follow a nonperturbative approach, proposed earlier by us for the free Brownian particle. The diffusion constants are calculated analytically and the positivity of the master equation is shown to hold above a critical temperature. We compare the long time behavior of the average kinetic and potential energies with known thermodynamic results. In the limit of vanishing oscillator frequency of the system, we recover the results of the free Brownian particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An identity satisfied by the harmonic oscillator (Talmi-Moshinsky) brackets is derived from two equivalent methods for evaluating an integral often encountered in cluster model studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum Ohmic residual resistance of a thin disordered wire, approximated as a one-dimensional multichannel conductor, is known to scale exponentially with length. This nonadditivity is shown to imply (i) a low-frequency noise-power spectrum proportional to -ln(Ω)/Ω, and (ii) a dispersive capacitative impedance proportional to tanh(√iΩ )/ √iΩ. A deep connection to the quantum Brownian motion with linear dynamical frictional coupling to a harmonic-oscillator bath is pointed out and interpreted in physical terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new analysis of the nature of the solutions of the Hamilton-Jacobi equation of classical dynamics is presented based on Caratheodory’s theorem concerning canonical transformations. The special role of a principal set of solutions is stressed, and the existence of analogous results in quantum mechanics is outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact expressions for the partition function (Q) and the coefficient of specific heat at constant volume (Cv) for a rotating-anharmonic oscillator molecule, including coupling and rotational cut-off, have been formulated and values of Q and Cv have been computed in the temperature range of 100 to 100,000 K for O2, N2 and H2 gases. The exact Q and Cv values are also compared with the corresponding rigid-rotator harmonic-oscillator (infinite rotational and vibrational levels) and rigid-rotator anharmonic-oscillator (infinite rotational levels) values. The rigid-rotator harmonic-oscillator approximation can be accepted for temperatures up to about 5000 K for O2 and N2. Beyond these temperatures the error in Cv will be significant, because of anharmonicity and rotational cut-off effects. For H2, the rigid-rotator harmonic-oscillator approximation becomes unacceptable even for temperatures as low as 2000 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal coordinate analysis of a molecule of the type XY7 (point group D5h) has been carried out using Wilson's FG, matrix method and the results have been utilized to calculate the force constants of IF7 from the available Raman and infrared data. Some of the assignments made previously by Lord and others have been revised and with the revised assignments the thermodynamic quantities of IF7 have been computed from 300°K to 1000°K under rigid rotator and harmonic oscillator approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lewis (1968) invariant of the time-dependent harmonic oscillator is used to construct exact time-dependent, uniform density solutions of the collisionless Boltzmann equation. The spatially bound solutions are time-periodic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mandelstam�s argument that PCAC follows from assigning Lorentz quantum numberM=1 to the massless pion is examined in the context of multiparticle dual resonance model. We construct a factorisable dual model for pions which is formulated operatorially on the harmonic oscillator Fock space along the lines of Neveu-Schwarz model. The model has bothm ? andm ? as arbitrary parameters unconstrained by the duality requirement. Adler self-consistency condition is satisfied if and only if the conditionm?2?m?2=1/2 is imposed, in which case the model reduces to the chiral dual pion model of Neveu and Thorn, and Schwarz. The Lorentz quantum number of the pion in the dual model is shown to beM=0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An identity expressing formally the diagonal and off-diagonal elements of an inverse of a matrix is deduced employing operator techniques. Several well-known perturbation expressions for the self-energy are deduced as special cases. A new approximation and other applications following from the above formalism are briefly indicated through illustrations from a perturbed harmonic oscillator, chemisorption approximations and Kelly's result in the problem of electron correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exact travelling wave solutions for hydromagnetic waves in an exponentially stratified incompressible medium are obtained. With the help of two integrals it becomes possible to reduce the system of seven nonlinear PDE's to a second order nonlinear ODE which describes an one dimensional harmonic oscillator with a nonlinear friction term. This equation is studied in detail in the phase plane. The travelling waves are periodic only when they propagate either horizontally or vertically. The reduced second order nonlinear differential equation describing the travelling waves in inhomogeneous conducting media has rather ubiquitous nature in that it also appears in other geophysical systems such as internal waves, Rossby waves and topographic Rossby waves in the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.