22 resultados para dopants
em Indian Institute of Science - Bangalore - Índia
Resumo:
An investigation of the problem of controlled doping of amorphous chalcogenide semiconductors utilizing a Bridgman anvil high pressure technique, has been undertaken. Bulk amorphous semiconducting materials (GeSe3.5)100-x doped with M = Bi (x = 2, 4, 10) and M = Sb (x = 10) respectively are studied up to a pressure of 100 kbar down to liquid nitrogen temperature, with a view to observe the impurity induced modifications. Measurement of the electrical conductivity of the doped samples under quasi-hydrostatic pressure reveals that the pressure induced effects in lightly doped (2 at % Bi) and heavily doped (x = 4, 10) semiconductors are markedly different. The pressure effects in Sb-doped semiconductors are quite different from those in Bi-doped material.
Resumo:
The effect of hydrogenation on the photoluminescence (PL) of InP : Mg, InP : Zn and undoped n-InP is presented. An increase in the near band edge pl intensity due to passivation of non-radiative centers was observed in all the samples. A donor - acceptor pair transition was observed before hydrogenation in the InP : Mg sample and after hydrogenation in the InP : Zn sample due to the acceptor deactivation. In n-InP the enhancement of donor bound exciton after hydrogenation points to the absence of donor passivation.
Resumo:
We report on the substrate assisted doping of ZnO nanowires grown by a vapor transport technique. The nanowires were grown non-catalytically on multiwalled carbon nanotubes (MWCNTs) and soda lime glass (SLG). Carbon from MWCNTs and sodium from SLG diffuse into ZnO during the growth and are distributed uniformly and provide doping. An advantage associated with the technique is that no conventional external dopant source is required to obtain doped ZnO nanowires. The diameter, length and hence the aspect ratio can easily be varied by changing the growth conditions. The transport studies on both carbon and sodium doped ZnO support the p-type nature of ZnO. The p-type nature of carbon doped ZnO is stable for at least eight months.
Resumo:
In this study, we report an approach for the adsorption and desorption of anionic (sulfonated) dyes from aqueous solution by doped polyaniline. In this study, we have synthesized PANI with two dopants, namely, p-toluenesulfonic acid (PTSA) and camphorsulfonic acid (CSA), and used these to adsorb various dyes. It was found that the doped PANI selectively adsorbs anionic dyes and does not adsorb cationic dyes. The adsorption of anionic dyes causes the variation in electrical conductivity of PANI, indicating its potential as a conductometric sensor for these dyes at very low concentration. The adsorbed dyes were desorbed from the polymer by using a basic aqueous solution. The adsorption and desorption kinetics of the dye in the presence of doped PANI were also determined.
Resumo:
A study of the effect of bismuth dopant on the electronic transport properties of the amorphous semiconductors Ge20S80-xBix under high pressure (up to 140 kbar) has been carried out down to liquid-nitrogen temperature. The experiments reveal that the electronic conduction is strongly composition dependent and is thermally activated with a single activation energy at all pressures and for all compositions. A remarkable resemblance between the electronic conduction process, x-ray diffraction studies, and differential thermal analysis results is revealed. It is proposed that the n-type conduction in germanium chalcogenides doped with a large Bi concentration is due to the effect of Bi dopants on the positive correlation energy defects present in germanium chalcogenides. The impurity-induced chemical modification of the network creates a favorable environment for such an interaction.
Resumo:
Recent observation of n-type conduction in amorphous Ge20Ss_xBix at large bismuth concentrations (x = 11), which otherwise shows p-type conduction, has aroused considerable interest in the international scientific community [1]. The mechanism of such impurity incorporation in a germanium chalcogenide glass is not understood and is a topic of current interest. In our recent publications [2-10] we have brought to light some hitherto unknown and interesting features of bismuth dopants in chalcogen-rich Ge-X (X -- S, Se) glassy compositions. In this communication we present our new results of investigations on vitreous semiconductors Ge20S80 Bi using electron microscopy, electron diffraction of as-prepared and annealed/pressure quenched compositions. Our results provide conclusive support to the formation of composite clusters containing all the three elements, germanium, sulphur and bismuth, which crystallize in simpler stoichiometric compounds Bi2S3 and GeS2.
Resumo:
The quaternary system Sb1bTe1bBi1bSe with small amounts of suitable dopants is of interest for the manufacture of thermoelectric modules which exhibit the Peltier and Seebeck effects. This property could be useful in the production of energy from the thermoelectric effect. Other substances are bismuth telluride (Bi2Te3) and Sb1bTe1bBi and compounds such as ZnIn2Se4. In the present paper the application of computer programs such as MIGAP of Kaufman is used to indicate the stability of the ternary limits of Sb1bTe1bBi within the temperature ranges of interest, namely 273 K to 300 K.
Resumo:
Recent advances in structural integrity evaluation have led to the development. of PZT wafer sensors (PWAS) which can be embedded or surface mounted for both acoustic emission (AE) and ultrasonic (UT) modes, which forms an integrated approach for Structural Health Monitoring (SHM) of aerospace structures. For the fabrication of PWAS wafers, soft PZT formulation (SP-5H Grade containing dopants like BA, SM, CA, ZN, Y and HF) were used. The piezoelectric charge constant (d(33)) was measured by a d(33) meter. As a first step towards the final objective of developing Health monitoring methods with embedded PWAS, experiments were conducted on aluminum and composite plates of finite dimensions using PWAS sensors. The AE source was simulated by breaking 0.5mm pencil lead on the surface of a thin plate. Experiments were also conducted with surface mounted PZT films and conventional AE sensors in order to establish the sensitivity of PWAS. A comparison of results of theoretical and experimental work shows good agreement.
Resumo:
Polyaniline salts have been synthesized by chemical oxidative polymerization of aniline in the presence of phenoxy acetic acid and its two derivatives using emulsion method at room temperature and characterized by different techniques such as infrared, H-1 and C-13 NMR, UV-visible spectroscopy, SEM, wide angle X-ray diffractograms and conductivity measurements. These polyaniline salts have the desirable property of high solubility for processibility in solvents such as DNIF, DMSO and a mixture of CHCl3 and acetone and they exhibit fairly good conductivity of similar to 3.0 x 10(-3) S cm(-1). The variations in solubility, conductivity and morphology with the protonating strength of the dopants are examined.
Resumo:
The quaternary system Sb1bTe1bBi1bSe with small amounts of suitable dopants is of interest for the manufacture of thermoelectric modules which exhibit the Peltier and Seebeck effects. This property could be useful in the production of energy from the thermoelectric effect. Other substances are bismuth telluride (Bi2Te3) and Sb1bTe1bBi and compounds such as ZnIn2Se4. In the present paper the application of computer programs such as MIGAP of Kaufman is used to indicate the stability of the ternary limits of Sb1bTe1bBi within the temperature ranges of interest, namely 273 K to 300 K.
Resumo:
We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.
Resumo:
In ceramics, dopants offer the possibility of higher creep rates by enhancing diffusion. The present study examines the potential for high strain rate superplasticity in a TiO2 doped zirconia, by conducting creep experiments together with microstructural characterization. It is shown that both pure and doped zirconia exhibit transitions in creep behaviour from Coble diffusion creep with n similar to 1 to an interface controlled process with n similar to 2. Doping with TiO2 enhances the creep rate by over an order of magnitude. There is evidence of substantial grain boundary sliding, consistent with diffusion creep.
Resumo:
Passivation of point and extended defects in GaSb has been observed as a result of hydrogenated amorphous silicon (a-Si:H) treatment by the glow discharge technique. Cathodoluminescence (CL) images recorded at various depths in the samples clearly show passivation of defects on the surface as well as in the bulk region. The passivation of various recombination centers in the bulk is attributed to the formation of hydrogen-impurity complexes by diffusion of hydrogen ions from the plasma a-Si:H acts as a protective cap layer and prevents surface degradation which is usually encountered by bare exposure to hydrogen plasma. An enhancement in luminescence intensity up to 20 times is seen due to the passivation of nonradiative recombination centers. The passivation efficiency is found to improve with an increase in a-Si:H deposition temperature. The relative passivation efficiency of donors and acceptors by hydrogen in undoped and Te-compensated p-GaSb has been evaluated by CL and by the temperature dependence of photoluminescence intensities. Most notably, effective passivation of minority dopants in tellurium compensated p-GaSb is evidenced for the first time. (C) 1996 American Institute of Physics.
Resumo:
Insertion of just a few impurity atoms in a host semiconductor nanocrystal can drastically alter its phase, shape, and physical properties. Such doped nanomaterials now constitute an important class of optical materials that can provide efficient, stable, and tunable dopant emission in visible and NIR spectral windows. Selecting proper dopants and inserting them in appropriate hosts can generate many new series of such doped nanocrystals with several unique and attractive properties in order to meet current challenges in the versatile field of luminescent materials. However, the synthesis of such doped nanomaterials with a specific dopant in a predetermined host at a desired site leading to targeted optical properties requires fundamental understanding of both the doping process as well as the resulting photophysical properties. Summarizing up to date literature reports, in this Perspective we discuss important advances in synthesis methods and in-depth understanding of the optical properties, with an emphasis on the most widely investigated Mn-doped semiconductor nanocrystals.