41 resultados para dispersed teams

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersions of Al2O3 as well as CeO2 in CaF2 are found to enhance the conductivity of CaF2. Both these systems are biphasic and the electrical conduction in them is purely ionic in nature. At 650 K the increase in the ionic conductivity of the dispersed solid electrolyte system CaF2---Al2O3 is by about two orders of magnitude in relation to the conductivity of the host electrolyte CaF2, whereas for the CaF2---CeO2 system it is about three orders of magnitude. Some aspects of the increase in the ionic conductivities of CaF2---Al2O3 and CaF2---CeO2 electrolytes can be explained by a recent theoretical model. It is proposed that a substantial enhancement in the vacancy concentration of CaF2, brought about by the attraction of F− ions to the surface of Al2O3 (or CeO2), is responsible for the low temperature increase in the ionic conductivity of CaF2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seizure resistance of cast graphite-aluminium composite alloys containing graphite particles of various sizes was studied using a Hohman wear tester. If the graphite content is more than 2% these alloys can be selfmated without seizure under conditions of boundary lubrication. The size and shape of the graphite particles had no significant effect on seizure resistance. Owing to the extensive deformation and fragmentation of graphite, the low yield strength of the aluminium matrix and the low flow stress of the graphite particles, a continuous layer of graphite is formed on the mating surfaces even after a short running-in period. This layer persisted even after extensive wear deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hornbills are important dispersers of a wide range of tree species. Many of these species bear fruits with large, lipid-rich seeds that could attract terrestrial rodents. Rodents have multiple effects on seed fates, many of which remain poorly understood in the Palaeotropics. The role of terrestrial rodents was investigated by tracking seed fate of five horn bill-dispersed tree species in a tropical forest in north-cast India. Seeds were marked inside and outside of exclosures below 6-12 parent fruiting trees (undispersed seed rain) and six hornbill nest trees (a post-dispersal site). Rodent visitors and seed removal ere monitored using camera traps. Our findings suggest that several rodent species. especially two species of porcupine were major on-site seed predators. Scatter-hoarding was rare (1.4%). Seeds at hornbill nest trees had lower survival compared with parent fruiting trees, indicating that clumped dispersal by hornbills may not necessarily improve seed survival. Seed survival in the presence and absence of rodents varied with tree species. Some species (e.g. Polyalthia simiarum) showed no difference, others (e.g. Dysoxylum binectariferum) experienced up to a 64%. decrease in survival in the presence of rodents. The differing magnitude of seed predation by rodents can have significant consequences at the seed establishment stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt2+ ion dispersed in CeO2, Ce1-xTixO2-delta and TiO2 have been tested for preferential oxidation of carbon monoxide (PROX) in hydrogen rich stream. It is found that Pt2+ substituted CeO2 and Ce(1-x)TixO(2-delta) in the form of solid solution Ce0.98Pt0.02O2-delta and Ce0.83Ti0.15Pt0.02O2-delta are highly CO selective low temperature PROX catalysts in hydrogen rich stream. Just 15% of Ti substitution in CeO2 improves the overall PROX activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil phase, in an oil-in-water emulsion on a steel substrate, is strongly repelled by the substrate. The oil in this situation does not wet the steel and steel/steel friction is high. In this work we disperse anionic surfactants in an oil film and study the effect of this dispersion on the force of interaction between a silica colloid probe (AFM) carrying the oil film and a steel substrate in water. It is observed that when the surfactant is oil insoluble and the interaction time is short the strong entropic repulsion (without the surfactant) is replaced by a strong attraction. The steel on steel sliding friction in this case is low compared to that what is achieved when the surfactant is soluble in oil. The rationale underlying these interactions is explored here. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoclusters of bimetallic Pt-Ru are electrochemically deposited on conductive polymer, poly(3,4-ethylenedioxythiophene)(PEDOT), which is also electrochemically deposited on a carbon paper substrate. The bimetallic deposition is carried out in an acidic electrolyte consisting of chloroplatinic acid and ruthenium chloride at 0.0 V versus saturated calomel electrode (SCE) on PEDOT coated carbon paper. A thin layer PEDOT on a carbon paper substrate facilitates the formation of uniform, well-dispersed, nano clusters of Pt-Ru of mean diameter of 123 nm, which consist of nanosize particles. In the absence of PEDOT, the size of the clusters is about 251 nm, which are unevenly distributed on carbon paper substrate. Cyclic voltammetry studies suggest that peak currents of methanol oxidation are several times greater on PtRu-PEDOT electrode than on Pt-Ru electrode in the absence of PEDOT. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new two-step synthesis of ZrO2-MCM nanocomposites using the gel combustion technique was accomplished; the resulting material had a high-surface area and showed very high adsorption activity. The deposition of 25 nm ZrO2 particles over MCM was achieved using gel combustion technique with glycine as a fuel, and the formation of nanocomposites was confirmed using transmission electron microscopy. The composites were also characterized by XRD, SEM, FTIR and N2 adsorption-desorption analysis. The nanocomposites were tested for the adsorption of cationic dyes. High rates of adsorption and large dye uptake were observed over the nanocomposites. The rate of adsorption over the nanocomposites was higher than that observed for physical ZrO2-MCM mixtures and commercial activated carbon. The nanocomposite with 10 wt % ZrO2 showed the highest rate of adsorption owing to the synergistic effects of ZrO2 surface groups, smaller particle size, fine dispersion and high-surface area of the composite. (c) 2012 American Institute of Chemical Engineers AIChE J, 58: 29872996, 2012